Query Preserving Graph Compression

Wenfei Fan 1,2, Jianzhong Li 2, Xin Wang 1, Yinghui Wu 1,3 ¹University of Edinburgh ²Harbin Institute of Technology ³UC Santa Barbara

{wenfei@inf.,x.wang-360sms.,y.wu-180sms.}ed.ac.uk,lijzh0hit.edu.cn

Introduction

• Queries over large real-life graphs are prohibitively expensive.

- -Reachability queries: O(|V| + |E|) for G(V, E)
- -bounded simulation (relation-based, edgepath matching): $O(|E_p||V|^2)$ for $Q(V_p, E_p)$ • Indexing methods with construction and main-

Preserving **Graph** Pattern Compression

Bisimulation relation. A binary relation Bover V of G, s.t. for each $(u, v) \in B$,

 \circ the label of u and v are equivalent, and o for each u's (resp. v's) child u' (resp. v'), v (resp. u) has a child v' (resp. u') that $(u',v')\in B.$

tenance cost

• *unlikely* to lower the computational complexity • Graph compression: construct compressed graphs which preserve information *only* related to a class of queries of users' choice

Querying Recommendation Network

Query Preserving Graph Compression

Query Preserving Graph Compression. A triple $\langle R, F, P \rangle$ where

 $\circ R$: a compression function,

 $\circ F \subseteq L_q \times L_q$: a query rewriting function for a

Theorem: There is a graph pattern preserving compression $\langle R, F, P \rangle$ for G where

 $\circ R$ maps each node v in G to its bisimulation equivalence class $[v](O(|E|\log|V|))$

 $\circ F$ is the identity mapping

 $\circ P$ maps each query node u and its match (as an equivalence class [v] to node pairs (u, v')for each $v' \in [v]$ (linear time in the size of query result)

Algorithm.

- Compute the *unique maximum* bisimulation relation by iteratively refine the equivalence classes (initialized as V);
- \circ Construct the compression graph G_r where each node denotes a bisimulation equivalence class, and each edge connects two nodes $[v_1]$ and $[v_2]$ if (v_1, v_2) is an edge in G.

Gq G

Incremental Compression

Experimental Study

Compressing P2P network

		1		
dataset	G (V , E)	RC _{aho}	RC _{scc}	RC _r
facebook	1.6M~(64K,~1.5M)	13.19%	5.89%	0.028%
amazon	$1.5M \ (262K, \ 1.2M)$	35.09%	18.94%	0.18%
Youtube	931K(155K, 796K)	41.60%	17.02%	1.77%
wikiVote	111K(7K, 104K)	65.56%	8.33%	1.91%
wikiTalk	$7.4M \ (2.4M, \ 5.0M)$	48.21%	16.82%	3.27%
socEpinions	585K (76K, 509K)	29.53%	19.59%	2.88%
NotreDame	1.8M (326K, 1.5M)	43.27%	10.75%	2.61%
P2P	27K (6K, 21K)	73.24%	17.02%	5.97%
Internet	155K (52K, 103K)	88.32%	28.89%	16.08%
citHepTh	381K (28K, 353K)	71.32%	37.15%	14.70%

dataset	G (V , E , L)	PCr
California	$26K \ (10K, \ 16K, \ 95)$	45.9%
Internet	$155K \ (52K,\ 103K,\ 247)$	29.8%
Youtube	951K (155K, 796K, 16)	41.3%
Citation	$1.2M \ (630K,\ 633K,\ 67)$	48.2%
P2P	27K~(6K,~21K,~1)	49.3%

class of graph queries L_q , and $\circ P$: a *post-processing* function. For any data graph $G, Q \in L_q$ and $G_r = R(G)$, $\circ Q(G) = P(Q'(G_r)),$ • any query evaluation algorithm can be directly applied on G_r , without decompression, o indexing and optimization can be directly applied on G_r .

Query Preserving Graph Compression

Reachability Preserving Compression

Reachability equivalence relation. A node pair $(u, v) \in R_e$ if they have the same set of ancestors and descendants in G.

Graph Pattern Preserving Compression

Incremental Query Preserving Compression

• Real-life graphs are changing. To compute the compressed graph from scratch is expensive. • Incremental graph compression: given a data graph G, its changes ΔG , and a compressed graph G_r , compute ΔG_r , *i.e., changes* to G_r , such that $G_r \oplus \Delta G_r = R(G \oplus \Delta G)$

Affected area: the total changes in the data graph ΔG and the compressed graph ΔG_r . Unbounded, bounded, optimal ...

Compression Ratio: Reachability (in average 5%) and Pattern Preserving (in average 43%)

Query efficiency: Reachability (in average 2%) and Pattern Preserving (in average 30%)

Theorem: There is a reachability preserving compression $\langle R, F \rangle$ for G where

- $\circ R$ maps each node in G to its reachability equivalence class
- $\circ F$ maps each node in Q to its reachability equivalence class

Reachability Preserving Compression

• Incremental reachability preserving compression is unbounded even for unit updates, and is in $O(|AFF||G_r|)$ time • Incremental pattern preserving compression is unbounded for unit updates, and is in $O(|AFF|^2 + |G_r|)$ time

Algorithms.

- Update the ranks of the nodes (blocks), identify initial affected area
- Split-merge the blocks and propagate the affected area, until a fixpoint is reached

Incremental maintenance

Conclusion

• construct compressed graphs that can be directly queried without decompression • Reachability and pattern preserving compression are efficient, and can be maintained without account original graphs of the second se