Performance Prediction for Graph Queries

Mohammad Hossein Namaki, Keyvan Sasani, Yinghui Wu, Assefaw H. Gebremedhin
Washington State University
{mnamaki, ksasani, yinghui, assefaw } @eecs.wsu.edu

ABSTRACT

Query performance prediction has shown benefits to
query optimization and resource allocation for relational
databases. Emerging applications are leading to search sce-
narios where workloads with heterogeneous, structure-less
analytical queries are processed over large-scale graph and
network data. This calls for effective models to predict the
performance of graph analytical queries, which are often
more involved than their relational counterparts.

In this paper, we study and evaluate predictive techniques
for graph query performance prediction. We make several
contributions. (1) We propose a general learning framework
that makes use of practical and computationally efficient
statistics from query scenarios and employs regression mod-
els. (2) We instantiate the framework with two routinely
issued query classes, namely, reachability and graph pat-
tern matching, that exhibit different query complexity. We
develop modeling and learning algorithms for both query
classes. (3) We show that our prediction models readily ap-
ply to resource-bounded querying, by providing a learning-
based workload optimization strategy. Given a query work-
load and a time bound, the models select queries to be
processed with a maximized query profit and a total cost
within the bound. Using real-world graphs, we experimen-
tally demonstrate the efficacy of our framework in terms of
accuracy and the effectiveness of workload optimization.

1. INTRODUCTION

Graph queries have found prevalent use in knowledge ex-
traction, traffic analytics, Web mining, social network anal-
ysis, and social media marketing. Common graph queries
include (a) graph traversal, e.g., reachability queries, and
(b) pattern matching via subgraph isomorphism or simula-
tion. Emerging applications require efficient workload pro-
cessing with bounded resources [8]. Meanwhile, on real-
world graphs that easily have billions of nodes and edges,
graph queries are costly, even for reachability (linear-time),
let alone subgraph isomorphism (NP-complete).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

NDA’17 May 19, 2017, Chicago, IL, USA

© 2017 ACM. ISBN 978-1-4503-4990-1/17/05. .. $15.00

DOL: http://dx.doi.org/10.1145/3068943.3068947

J.Lo

Artist
s Band Canela Cox

Query Q (Artist)

a match

Figure 1: Approximate subgraph querying [19]

Database systems can greatly benefit from query perfor-
mance prediction (QPP) for effective resource management
and online query optimization. Given a workload W, a
database D, and performance metrics M (e.g., response
time, memory), the QPP problem is to predict M for each
query instance in W over D. Various modeling and learning
techniques for such predictions have been developed for re-
lational queries [2,6,9-11]. These approaches, by employing
statistics from relational algebra, relational data, and (logi-
cal and physical) query plans [2,12], have been found to be
quite accurate for relational queries.

In contrast, QPP is particularly challenging for graph
analytical workloads, for several reasons. First, graph
queries, unlike their relational counterparts, can be “struc-
tureless” [29], i.e., not well supported by rigid algebra and
syntax. It is often hard to exploit algebra and operator-level
features (e.g., number of “join”) [2,12] for graph queries (e.g.,
reachability queries). Second, graph data is often noisy and
heterogeneous. Features from data graph alone may not be
reliable for QPP tasks. Third, while a common practice for
QPP is to explore (logical and physical) query plans that are
generated following a principled manner [2], this is inappli-
cable for approximate graph queries.

Example 1: Consider a query posed on a knowledge graph
DBpedia that finds the artists who work with “J.Lo” in a
Band [19]. This query can be represented by a graph pattern
Q that carries (ambiguous) keywords, with a corresponding
approzimate match as illustrated in Fig. 1. Each pattern
node in @ may have a large number of candidate matches.
The quality of the answer is usually determined only at
run-time via similarity functions [29]. For example, “Canela
Cox” is a best answer when “Jennifer Lopez” is matched to
the ambiguous keyword “J.Lo” in the query. Conventional
QPP that exploits relational algebra may not be applicable
for graph pattern @), as the syntax and declarative operators
are hard to be derived from the “structureless” @Q. Moreover,
deriving statistics from the graph data alone is already ex-
pensive, due to the sheer size of data, and the fact that the
underlying graph may change from time to time. o

In this paper, we present effective QPP methods for
graph analytical workloads. We develop a practical learning
paradigm that only makes use of computationally efficient
query-oriented features and statistics from executed graph
queries, without imposing any assumptions on graph data,
query syntax and algebra. Our goal is to build a prediction
framework for routinely issued, structureless graph queries.

Contributions. We make the following contribution.
(1) We propose a general learning framework to predict the
query performance of graph analytical queries. The learning
framework makes use of (a) three pragmatic classes of query-
oriented features—called query-, sketch- and algorithm-
features—that characterize query constraints, statistics of
data to be accessed, and query evaluation behavior, respec-
tively; and (b) well established regression models.
(2) Using the framework, we study two classes of frequently
occurring graph queries and develop models and learning
algorithms for each query class.
(3) We apply the query performance prediction to resource-
bounded querying, and develop learning-based workload op-
timization strategies. The strategy aims to maximize the
total profit of executed queries within a time bound, by se-
lecting queries based on their predicted performance.
(4) Using real-world datasets, we experimentally verify the
effectiveness of the query prediction and workload optimiza-
tion. We find the following. (a) Our models can accu-
rately predict the performance of graph queries utilizing
conventional regression models and a handful of simple fea-
tures. The best predictor attains an average accuracy of 0.93
and 0.96 over the knowledge graphs DBpedia and Freebase,
respectively. (b) Our workload optimization strategy im-
proves the effectiveness (measured by total profit of pro-
cessed queries) of graph engines under bounded resource.
On average, it achieves 92.78% of the effectiveness of an
optimizer that knows the actual run-time of queries. These
suggest useful QPP tools for effective online graph analytics.
The rest of the paper is organized as follows. In Section
2, we briefly introduce the graph query classes we consider
as well as the algorithms used in our learning models as a
black box. In Section 3, we describe the models that we have
developed for prediction. In Section 4, we address workload
optimization problem. In Section 5, we present experimental
results. We describe related work in Section 6, and conclude
in Section 7.

2. QPP FOR GRAPH QUERIES

2.1 Graph queries

Data graphs. We consider a labeled and directed data
graph G=(V, E, L), with node set V" and edge set E. Each
node v € V (edge e € E) has a label L(v) (L(e)) that
specifies node (edge) information, and each edge represents
a relationship between two nodes. In practice, £ may specify
attributes, entity types, and relation names [16].

Graph queries. We consider two familiar query classes.

Graph pattern queries. Graph pattern matching has been
widely applied in areas such as social marketing, cyber se-
curity and knowledge extraction. A graph pattern Q is a
graph (Vg, Eq, Lg). Each pattern node u € Vg has a label
Lg(u) that describes the entities to be searched for (e.g.,
type, attribute values), and an edge e € Eg between two

query nodes specifies the relationship posed on the two en-
tities. A match of @ in G, denoted as Q(G), is a subgraph
of G that satisfies certain matching semantics. Given Q, G
and a function f(-) that quantifies the quality of the match
Q(G) to Q, a top-k graph pattern query Q(G,k, f) finds k
best matches ranked by their quality as determined by f(-).

We consider two specifications for graph pattern queries
(see Section 3.2) from approximate graph analytics:

o Subgraph query [29], which specifies a match Q(G) as a
subgraph induced by an isomorphism between @ and
Q(G); and

o Simulation query [17], which induces subgraphs Q(G)
with entities and relations that satisfy a (dual)-
simulation relation between @ and Q(QG).

For both query classes, the quality of Q(G) can be com-
puted by aggregating (e.g., summing up) a similarity score
between each node (resp. edge) in @ and its counterpart(s)
in Q(G) by f(-) [29]. A subgraph query @ and its top match
is illustrated in Fig. 1.

Reachability queries. Reachability queries are routinely used
for traffic analysis, social analysis and Web mining. We
consider a generalized reachability query Q(G, s, t,d), where
G is a graph, s is the source label, t is the target label, and d
is a number. The query asks: “Does there exist a source node
with label s and a target node with label t that are connected
by a path of length bounded by d in G2 When d=oco, and
s and t each has a unique match, Q(G, s, t,d) reduces to
conventional single-source single-target reachability test.

Graph pattern queries and reachability queries are repre-
sentative analytical queries. They do not have rigid query
structures and syntax. Moreover, the query performance are
determined at run-time, typically via a fixed-point compu-
tation. Conventional QPP that exploit operator- and plan-
level statistics is not applicable for these queries.

In the next subsection, we describe query performance
prediction for graph analytics. We address the query eval-
uation algorithms in Section 3, which are treated as “black-
box” by our learning framework.

2.2 Query performance prediction

Our goal here is to formulate QPP for graph ana-

lytical workloads. ~We consider (1) a mixed workload
W={Q1,...,Qn} over a set of query classes Q, where each
query @; is a query instance from a query class in Q; and
(2) response time t as the performance metric to be pre-
dicted. The problem of graph query performance predic-
tion, denoted as GQPP, is to learn a prediction model P to
predict the response time of each query instance in WW with
maximum accuracy measured by a specific metric.
Metric. A metric must measure how well the run-time of
future queries are likely to be predicted. We seek to min-
imize the error depending on the type of the queries and
the scale of their run-time. Therefore, we use R-Squared,
a widely used evaluation metric [12] to evaluate our mod-
els. Given n graph queries, R-Squared (denoted as R?) is
computed as follows:

S (yi —6i)?
Z?:l(yi - 9)?

where y, y and g are the actual values, predicted values,
and the mean of actual values, respectively. The larger the

R? value is (up to 1), the more accurate the model is.
To empirically verify the robustness of our models, we

RZ(ym@) =1-

Capturing features Exploratory data
- o Tram :
Training and run-time : r.avmmg‘ analysis
testing nstances Training
queries Queries Fm“." S8 instances
i /runtime
oy, /‘ ; e Learning over training
Query Generation e e queries
.' Offline
Query Graph database Le:fljrlning
types
| Workload . Online
- Resource bound Workload Predictor model Predicti
[Results Optimizer

Figure 2: Learning framework for GQPP

also consider two other statistical metrics besides R*: nor-
malized root mean square error (NRMSE) and mean absolute
error (MAE). NRMSE normalizes the standard deviation of
the differences between predicted values and actual values
(RMSE) normalized with standard deviation of actual val-
ues [27]. MAE, defined as = >" | [j — g/, is an absolute
comparison of predictions and eventual outcomes [10].

GQPP as regression. We approach GQPP as a regression
problem. We use the following construction.

o Input: A data graph G, a query @, a feature set F
o Output: a prediction model P that maximize R?

The problem is to learn, using regression, a function
f(xz) = y that maps a feature vector = (that encodes the
features in F) to a continuous value y corresponding to the
exact response time of the query. The goal is to minimize
| — y|. That is, the closer § is to y, the closer R? is to 1.

3. PREDICTION FRAMEWORK

We next introduce our GQPP framework. We start with
an overview of the framwork (Section 3.1). We then in-
stantiate the general framework to graph pattern queries
(Section 3.2) and reachability queries (Section 3.3).

3.1 Overview

The general GQPP framework is illustrated in Fig. 2.
Following statistical learning, it derives a prediction model
based on training sets (i.e., offline learning), and then pre-
dicts query performance for unknown “test” data points
based on the derived model (i.e., online prediction). Our
goal is then to adapt the framework to optimize the (mixed)
graph analytical workload within a bounded resource.

Learning phase. This stage consists of the following. (1)
The framework generates training workload Wr (to be dis-
cussed). To this end, it generates queries, evaluates the
queries over the data graph G (stored and managed by graph
database) by invoking standard query evaluation algorithms,
and collects the performance metrics and features for each
query to construct Wr. (2) The predictive model is then
derived by solving the regression problem (Section 2.2).

Features. As remarked earlier, graph analytical queries, un-
like their relational counterparts, cannot be easily character-
ized by features from operators, algebra and apriori query
plans. Features from data alone may also be unreliable. We
hence consider three classes of query-oriented features. The
features are called (Q)uery, (S)ketch, and (A)lgorithm fea-
tures, since they characterize statistics from query instances,
accessed data, and search behavior, respectively.

(a) Query features encode the topological constraints (e.g.,
query size, degree, cyclic) and semantic constraints (e.g.,

label, transformation functions [29]) from query terms.

(b) Sketch features. The idea is to exploit statistics that esti-
mate the specificity and ambiguity of a query by “sketching”
the data that will be accessed by the queries. These features
may include the size of candidates (the nodes having the
same or similar labels to some pattern query nodes), degree
of sampled candidates, and statistics of sampled neighbor-
hood of the candidates. By paying an affordable amount of
time, these features significantly contribute to the prediction
accuracy of graph queries (as verified in Section 5).

(c) Algorithm features refer to the features that characterize
the performance of graph querying algorithms. For exam-
ple, top-k graph search typically decomposes a query to sub-
queries, and assembles the complete results by aggregating
partial matches as multi-way joins [28]. We found that fea-
tures such as the number of decompositions and “joinable”
candidates are very informative and critical to predict the
cost of top-k search (see Section 3.2).

These features can be computed efficiently. Indeed, they
can be extracted by fast linear scans and sampling over
queries and data graphs, and are well supported by estab-
lished database indexing techniques [28].

Training workload. Given a query class Q, data graph G and
a standard evaluation algorithm A, the training workload
Wr is a set of pairs (Q;.F,t;), where (1) Q; is a query
instance from Q, F is a set of features, and Q;.F refers to
a feature representation of a query, and (2) ¢; is the actual
response time by evaluating @Q; with algorithm A. Each pair
is instantiated as a single data instance. Progressively, the
data instances are appended to the training workload.

Predictive models. We evaluate a number of methods.

Linear regression. A simple start is linear regression, where
the relationships of independent variables, i.e., the features
Q;:.F, and the dependent variable, i.e., the response time ¢;
of Q;, are modeled using linear predictor functions. The goal
is to find the coefficients ay in the equation t = a1 (Q.F1) +
a2(Q.F2) + ... + an(Q.Fn) + € where € is a noise term [9].

Regression trees. Linear regression may fail to accurately
model dependencies that are beyond linear. We consider
regression tree, a more complex model similar to a decision
tree, except that it predicts continuous values instead of
discrete classes.

Random forest. Significant improvements in predictors’ ac-
curacy have resulted from growing an ensemble of trees by
asking them to vote for the predicted value [4]. Ensem-
ble methods allow us to combine diverse weak regression
trees by taking different samples of the original data set
and then combining their outputs [22]. A random forest is
a meta-estimator that fits some regression trees on various
subsamples of the dataset and use averaging to improve the
predictive accuracy and control over-fitting [20].

KNN. An alternative method is k-nearest neighbors (kNN)
regression [1]. kNN predicts based on the k closest neighbors
of an instance, determined by a predefined distance function.
We consider Euclidean distance over the feature space.

SVM. We also consider SVM (Support Vector Machines)
with nu-SVR kernel for regression [23] (SVM). SVM maps
the features to a higher dimensional space to make it possible
to perform the linear separation and perform the regression
in that space.

Query 1

J.Lo
Query 2
Artist Band
Artist Band
top-1
Jennifer - Jennifer
Sorted Lopez . L] Lopez
Access Q i Join m
(Fetch) T
. Canela Tim & | Canela Tim &
Cg‘r{;ila Tg}f | Co{ 2?”(1)}) | Cox ll;’;b
- -
- -
ranked = =
partial 8 c—o
answers

Figure 3: Illustration of top-k querying [19]

Correlation analysis. Exploratory data analysis (EDA) is
an important step in data mining to understand the nature
of the data. Leveraging summarization and visualization
techniques, it seeks to identify critical features of a dataset
and to eliminate outliers and anomalies [25]. We use EDA
to compare the statistical characteristics of data sets (see
Table 4), identify the relative importance of the features
(see Tables 1, 2, and 3), and visually analyze the accuracy
of predictors (Fig. 5(a)).

Online prediction. The prediction model is applied to
predict the performance of newly arrived queries. Upon
receiving a query workflow, the framework (1) collects the
queries and computes the query features, and (2) predicts
the query performance metrics. The predicted results can
then be readily applied for resource allocation and workload
optimization (see Section 4).

We next present the learning-based GQPP for specific
graph analytical query classes. The major specification we
need to make is to identify proper features.

3.2 GQPP for pattern queries

We consider two representative classes of graph pattern
queries as follows.
Top-k Subgraph queries [28]. A top-k subgraph query
Q(G,k, f) defines a match using subgraph isomorphism,
while f is derived by a set of functions drawn from a li-
brary (e.g., acronym, synonym, abbreviations), where each
function maps nodes and edges (as ambiguous keywords) in
Q@ to their counterparts in G.

Algorithm. A common practice to evaluate Q(G, k, f) is to
follow the Threshold Algorithm [7] that aggregates top-k
tuples in relational tables. Such an algorithm does the fol-
lowing (illustrated in Fig 3).

(1) Decomposes @ to n small fragments (subqueries, e.g.,
stars, twigs) where partial answers can be efficiently evalu-
ated. For each fragment, a sorted list is assigned.

(2) Iteratively generates and fetches partial matches for each
fragment, and assembles the partial matches to complete
ones whenever possible in a n-way join, following a sorted
access to the lists in (1), until £ complete answers are found
or no new partial matches can be generated. Two optimiza-
tions are typically applied in step (2). (a) A “pivot” pattern
node (e.g., center of a star) is selected and assigned to each
fragment of @, so partial answers can be computed more

Table 1: Top features for subgraph queries

Feature Type | Rel.imp.(%)
partial matches candidate A 69.43
joinable nodes A 15.24
pivots contributed in match(es) A 8.45
node in fragments A 5.45
pivot candidates S 1.01
pivot degree avg. S 0.22
of query nodes Q 0.09
of query relationships Q 0.07
of fragments A 0.03

efficiently. In accordance, a priority queue P is maintained
for the pivot nodes, which bookkeeps their candidates with
non-increasing order (determined by function f). (b) An es-
timated upper bound of the quality of the “unseen” answers
and a lower bound of the quality of the “seen” complete
matches are maintained and compared to guarantee early
termination.

Example 2: The algorithm finds top-1 answer for the query
Q@ shown in Fig 1 as follows (illustrated in Fig 3). It first
decomposes Q to two stars (@1 and Q2). It then fetches
partial answers for each star query in a sorted manner, and
joins the partial answers whenever possible, until it finds a
complete match and termination criteria is met. a

We use the algorithm in [28] as a “yardstick” for TA-style
top-k subgraph search.

Features. We consider the following features.

(1) Query features (@): indicates the query size, determined
by the number of pattern nodes and edges. Intuitively, it
usually takes more time to process larger queries.

(2) Sketch features (S): includes the number of candidates
for pivot nodes. The more candidates pivot nodes have, the
more expensive the join operations are.

(8) Algorithm features (A): Abusing the algorithm structure,
we extract the features that are related to query decompo-
sition behavior, such as number of decomposed sub-queries,
number of nodes in each sub-query, and number of pivot
nodes that are in a non-empty partial match, among others.
The candidate size of pivot nodes can be efficiently esti-
mated by using neighborhood indexing [28]. We also count
the number of “joinable nodes” from the decomposition, i.e.,
the number of pattern nodes shared by two sub-queries. The
intuition is that the more joinable nodes there are, the more
expensive it is to find a complete match due to the equi-join
nature of the algorithm.

Observation. We report in Table 1 the most important fea-
tures, ranked by their relative importance (determined by
correlation and EDA component). In a decision tree, the
importance of a feature F; (mean decrease impurity) [15]
is the total amount of impurity reduction by adding F; to
the tree, where impurity can be computed utilizing variance
reduction [5]. In a forest model, the relative importance is
averaged over all the trees for each feature [20].

We find that Algorithm and Sketch features play impor-
tant role in predicting the performance of top-k subgraph
queries. Query features, on the other hand, is less impor-
tant. Indeed, the performance of top-k subgraph queries
may highly depend on the algorithm behavior (decomposi-
tion, n-way joins in the TA-style computation), which can be
more critical than the number of joins (a plan-level feature)
in a graph pattern [12].

Table 2: Top features for Dual-simulation queries

Feature Type | Rel. imp. (%)
sum of out-deg. in candidates S 44.71
candidates of nodes S 30.68
sum of in-deg. in candidates S 24.18
query edges Q& A 0.22
query nodes Q 0.20

Dual-simulation [17]. A dual-simulation query Q(G,k, f)
relaxes the subgraph isomorphism from 1-1 bijective map-
ping to matching relations. Given Q(Vg, Eq, Lg) and graph
G(V, E, L), a match relation R C Vg x V satisfies the follow-
ing: (1) for any node u € Vg, there is a match v € V such
that (u,v) € R, and Lg(u)=L(v); (2) for any (u,v) € R,
and any child (resp. parent) of u (denoted as u’) in Q, there
is a child (resp. parent) of v (denoted as v’) in G, such that
(u’,v") € R. That is, it preserves both parent and child
relationships between a node u and its matches v.

As dual-simulation only considers label equality, f is a la-
bel equality function. It is known that there exists a unique,
maximum matching relation R for dual-simulation [17].
Hence k=1 in Q(G, k, f), and Q(G, k, f) refers to the largest
subgraph of GG induced by the matches.

Algorithm. A standard algorithm for dual-simulation queries
Q(G,1, f) starts by initializing, for each node u in @, a
candidate set C'(u) with the nodes having the same label.
It then iteratively performs two join operations between the
children of candidate sets C'(u) (resp. parents of C'(v)) and
C(v) (resp. C(u)) for each edge (u,v) € Eq, and removes
the candidates that cannot satisfy the constraints of dual-
simulation by definition. This is repeated until a fixed point
is reached (no candidate can be removed).

Features. Again, it is nontrivial to predict the performance
of dual-simulation as a fixed-point computation. Luckily,
most of the graph pattern queries are not large (e.g., with
diameters up to 2 [3]), and a proper “sketching” of the can-
didates may suggest accurate estimation. We consider the
following features shown in Table 2 for dual-simulation, us-
ing the algorithm in [17] as yardstick algorithm.

(1) Query features: same as subgraph queries, we use num-
ber of nodes and edges of a query as query features.

(2) Sketch features: includes the size of candidates |C(u)|
for each pattern node u in a query) and statistics of their
degree information. Intuitively, more candidates indicate
more expensive “joins” in the fixed-point computation. As
dual-simulation preserves both parent and child relationship
of each pattern node, we extract aggregations of both in-
degrees and out-degrees of their candidates.

(8) Algorithm features: we consider the number of pattern
edges as an algorithm feature as well, due to the nature of
the fixed-point computation: it always follows query edges
to perform join operations.

Observation. Unlike top-k subgraph queries, we find that
Sketch features dominate the prediction of the efficiency of
the computation for dual-simulation queries (as illustrated
in Table 2). Candidate size and degree are critical for pre-
dicting dual-simulation query performance. Query size, on
the other hand, is less important.

3.3 GQPP for reachability queries

We next investigate reachability queries. We use a suit-
ably modified Breadth-First Search algorithm to evaluate

Table 3: Top features for reachability queries

Feature Type | Rel. imp. (%)
hop bound d Q 57.37
sum out-deg. of src. cand. S 33.09
sum in-deg. of src. cand. S 4.36
candidates of src. S 2.12
sum in-deg. of dest. cand. S 1.30
candidate of dest. S 0.93
sum out-deg. of dest. cand. S 0.81

reachability queries Q(G, s,t,d). The algorithm finds the
candidate sets for source and target labels, and performs
reachability tests between the candidate sets of s and t.

Features. We use the following features (illustrated in Ta-
ble 3) for reachability queries.

(1) Query features: includes the hop bound d. Intuitively,
the larger d is, the more expensive the traversal algorithm
is, due to the larger set of nodes to be visited.

(2) Sketch features: include both candidate size for source
and target labels, and statistics of their degrees.

(3) Algorithm features: As the behavior of regular breadth
first search is not distinguishable for different reachability
query instances, we do not consider algorithm features.

Observation. For reachability queries, Query feature d and
Sketch features on degrees of source and target candidates
are the most important features. Indeed, the more candi-
dates and more neighbors they have, and the more hops a
query needs to visit, the more expensive the query is.
These observations are further verified in our experimental
study for graph pattern queries (see Table 6, Section 5).

4. WORKLOAD OPTIMIZATION

Once the prediction models are derived, they can be read-
ily applied for workload optimization. As an application, we
introduce a query selection strategy for resource bounded
computation based on our GQPP framework. To this end,
we formalize a workload optimization problem in the context
of resource-bounded querying [8].

Workload optimization. Consider a mixed query work-
load W={Q1,...,Qn} over a set of query classes Q, where
each query @); is an instance of a query class in Q, and
is associated with a profit p;. Given a graph G, workload
W and a time bound T, the problem is to find a set of
queries W’ such that (a) the total time cost for evaluating
W is bounded by T', and (b) the total profit >°, .,/ pi is
maximized. In practice, the profit may refer to e.g., query
importance, priority or QoS profit [21].

Given the GQPP predictor, we present an optimization
strategy as follows. (1) Upon receiving W, it invokes the
predictor to estimate the time cost ¢; for each query Q;.
(2) It then selects a set of queries W C W by solving the
knapsack problem via the following construction. It takes
each query @); as an item, the predicted run-time ¢; (resp.
profit p;) of Q; as item weights (resp. profit), and the time
bound T as the size of a knapsack. We can verify that this
construction is an approximation preserving reduction [24]
from workload optimization to knapsack problem. It then
invokes a fully polynomial time approximation scheme for
knapsack problem [24] that greedily selects the query with
high profit. This finds W’ with approximation ratio (1 — ¢)
for error bound € € (0,1), and in O(|W)|?) time.

S. EXPERIMENTS

Using two real-world knowledge graphs, we conduct three
sets of experiments to evaluate the following: (1) Perfor-
mance of different machine-learning predictors for GQPP;
(2) Impact of the factors (e.g., size of training data) on the
accuracy of the predictors; and (3) Effectiveness of query
workload management, using a case study.

Experimental Setting. We used the following setting.

Datasets. The two real-world knowledge graphs we use for
our experiments are Freebase and DBpedia. Freebase is a col-
laboratively created large knowledge base, containing 40.3M
entities (e.g., people, companies, cities), 180M relationships,
and 20K node and edge labels, extracted from several public
knowledge bases including Wikipedia. DBpedia consists of
4.86M labeled entities (where each label is one of the 1K
labels such as “Place”, “Person”, “Building”) and 15M edges.

Workload. We develop two query generators, one for
graph pattern queries (including subgraph queries and dual-
simulation queries) and the other for reachability queries.
These queries are used to construct the training and test
sets over the two real-world knowledge graphs.

Graph pattern queries. To generate graph pattern queries
Q(k, f,G), we use the DBPSP benchmark [18], a DBpedia
query benchmark. To achieve this, we first generate a set
of query templates. Each template has a topology sampled
from a graph category' as unlabeled graph. It is then as-
signed with a type sampled from the top 20% most frequent
types in the ontologies of DBPedia and Freebase. We create
20 templates to cover common entity types and generate
a total of 1K queries by instantiating the templates. The
generated queries were used for both subgraph queires and
dual-simulation queries. We draw the matching function f
from a library of similarity functions as in [29]. We then set
an integer k drawn from [10,100].

Reachability queries. For reachability queries Q(s,t,d,G),
we set d € [1,4], and randomly select a pair of labels, from
the top 20% most frequent labels in G. We sampled 4K
queries, 1K for each d.

We execute each of these queries 5 times and record the
average execution time in milliseconds (ms) for each query.
Table 4 shows the average, minimum, and maximum running
times of the query classes for our datasets. As the table
shows, we have a mix of long and short running queries.

Algorithms. We implemented the following, all in Java.

(1) Standard query evaluation algorithms (Sec. 3), includ-
ing: (a) STAR, the algorithm of [28] for top-k subgraph
queries, (b) dual-simulation [17], for dual-sim queries, and
(c) a variant of Breath-First Search, for reachability queries.

(2) Query workload optimization algorithms, including (a)
our workload optimization algorithm Opt_RF, (b) Opt_Rnd,
a baseline algorithm that randomly selects a next query to
be executed in the workload, until the total response time
reaches the time bound T, and (c) Opt_True, a counterpart
of Opt_RF that uses the actual query response times to ap-
proximate the best solution.

Predictive models. We implemented all the methods (lin-
ear regression LR, regression tree RT, random forest RF,
k-nearest neighbors kNN [1] and SVM [23]) with scikit-learn
library [20], using their default settings.

Lgraphclasses.org

Metrics. We use three metrics as remarked in Section 2.2:
R-Squared, NRMSE, and MAE.

Test platform. We ran all of our experiments on a Linux
machine powered by an Intel 2.30 GHz CPU with 64 GB
of memory. Each test is repeated 5 times and the averaged
results are reported.

Result overview. We summarize our findings below.

(1) Using the three classes of features and conventional re-
gression models, the performance of analytical graph queries
can be predicted quite accurately (Exp-1).

(2) The predictors achieve high accuracy without using too
large training query sets and very complex models (Exp-2).

(3) Our case study verifies the effectiveness of our approach
for the variety of query workload managements including
the single query class, the mixture of the queries, and profits
assignments (Exp-3).
We next introduce our findings in details.

Exp-1: Performance of predictive models. We first
evaluate the accuracy of predictive models LR, RT, and RF,
as well as kNN and SVM.

R-Squared Accuracy. To estimate the accuracy of the pre-
dictors, we randomly select 20% for validation and the re-
maining to train the predictor. We iterate the process for 5
times and the average results are reported.

We report the accuracy of LR, RT, and RF for the three
query classes, in Fig 4(a), Fig 4(b), and Fig 4(c), respec-
tively. In all the cases, RF outperforms the alternatives. It
reaches an accuracy range between 0.86 and 0.99 (resp. 0.98
and 0.97) for dual-simulation (resp. subgraph queries) in
DBpedia and Freebase respectively. For reachability queries,
it achieves 0.90 accuracy over Freebase and 0.95 accuracy for
DBpedia. The higher accuracy of RF is due to its inherent
ensemble methods that lead to the generality and robustness
of the learned predictors [4]. The relatively lower accuracy of
LR is due to the non-linearity of the independent variables
(i.e., feature values) with respect to the response variable
(i.e., performance metric).

Further, we find the average accuracy of kNN (k = 2 from
[2—4]) and SVM to be even lower: 0.72 and 0.48 respectively.
We thus omitted the results of kNN and SVM.

Alternative metrics. We report the average accuracy mea-
sured by the two alternative metrics MAE and NRMSE over
Freebase and DBpedia in Table 5. We find the following. (1)
In all cases, MAE is less than 0.8 seconds, which indicates a
quite accurate prediction, especially for our query workload
with a large variance of response time (as verified in Exp-3).
Note that the accuracy of two different query types are not
comparable using MAE, as it is scale-dependent. (2) NRMSE
is in general small, especially for dual-simulation and top-k
querying. These verify that the prediction models are quite
robust to different metrics.

Actual vs. predicted. The comparison between predicted
and actual execution times using RF for top-k querying over
DBpedia is shown in Fig 5(a) for 1K queries.

We also find that the training of RF is quite efficient
and feasible over large workload. It takes less than 1 sec-
ond to train RF models over a training workload of 800
queries. Using well-supported graph neighborhood and la-
bel indices [29], it takes on average 15.3 seconds to predict

Table 4: Minimum, average, and maximum response time of the query samples

Reacahbility Dual-sim Subgraph queries
Dataset | Min (ms) | Avg (ms) | Max (ms) | Min (ms) | Avg (ms) | Max (ms) | Min (ms) | Avg (ms) | Max (ms)
DBPedia 5 592 12,553 8 16,828 60,015 122 6,754 63,582
Freebase 1 655 6,308 19 37,553 60,046 284 5,816 51,138
1 100 - w o
09 LR w50 ot
08 RE mn é” 80
2 3 9 § 70
% o7 % g é‘ 60 Random —+— |
Z 06 Z) O Pred RF % |
05 ERY
0
04 2 ‘ ‘ ‘
(L) (1010) (100,100) (IK.IK) (10K.I0K)

Freebase

DBPedia

DBPedia Freebase

(a) Reachabilities Accuracy (b) Dual-Sim. Accuracy

Freebase

DBPedia

Profit distribution: N(u,6)

(c) Top-k Accuracy (d) Varying N(u,0)

Figure 4: Performance evaluation

Table 5: Accuracy of RF: alternative metrics

Dataset Type MAE (seconds) | NRMSE (%)
Reachability 0.163 14.02
DBPedia Dual-Sim. 0.800 14.98
Top-k 0.271 6.43
Reachability 0.177 23.21
Freebase Dual-Sim. 0.111 1.25
Top-k 0.130 4.20
7 < !
60 N ¥ 09t e
B 50 * . 08
§ 40 N o ?;3 07
% : 300 B 2 06 DualSimulation ——
< ol = £ [05 Reachab(;riiy e
o 04

0 10 20 30 40 50 60
Predicted (seconds)

(a) Actual vs. Prediction

96 272 448 624 800
(b) Training Size
Figure 5: Accuracy of predictions

the performance of a workload of 433 queries, with total
response time of 15 minutes.

Exp-2: Impact of factors. We next evaluate the impact
of model factors on the accuracy of the best model RF.

Varying # of training queries. Fixing the size of test set at
200, we varied the number of training queries from 96 to
800, as shown in Fig 5 over DBpedia. The results tell us
the following. (1) As expected, for all the query classes,
RF gains a better accuracy over larger amount of training
queries. (2) Not many training queries are needed to achieve
a reasonable accuracy. For example, for the top-k querying,
the accuracy is already above 0.90 after 448 queries. The
results over Freebase (not shown) is consistent. In particular,
R? is more than 0.85 for reachability after 272 queries and
0.88 after 448 queries for top-k querying.

Feature types. To further investigate the importance of the
three type of features ((Q)uery, (S)ketch and (A)lgorithm),
we trained seven predictors, one for a combination of the
feature type for top-k queries over DBpedia. Table 6 sum-
marizes the results. The results show the following. (1)
Corresponding to the relative importance of the features in
Table 1, for top-k, the query-only (resps. sketch) features
perform poorly and the addition of those two does not add
much to the accuracy of the results. (2) Algorithm-only fea-
tures perform reasonably—they raise the accuracy to 0.925.

Table 6: Impact of feature type: Top-k (DBpedia)

Feature types | R-Squared

Q 0.268

S 0.329

A 0.925

Q+S 0.375
Q+A 0.942
S+A 0.930
Q+S+A 0.985

(3) The best accuracy (0.985) is obtained by combining all
three categories of features.

Varying # of trees. We evaluated the impact of the number
of estimators in RF, by varying the number of trees in RF
from 1 to 100. As expected, by increasing the number of
estimators until a saturated point, we observed better accu-
racy. In our experiments, no better performance is observed
after 10 trees. Therefore, we fix the number of estimators
to 10 for all of other experiments.

Exp-3: Query workload optimization. We next con-
duct case studies to test the effectiveness of GQPP for query
workload optimization. To this end, we quantify the effec-

>0, Pi
%, where W (resp. W’) refers
Qlew’ Pi

tiveness of Opt_RF as
to the selected queries onOpt,RF (resp. Opt_True). It mea-
sures the ratio of the total profits gained by Opt_RF to the
total profits obtained by Opt_True, under time bound T.
The effectiveness of Opt_Rnd is similarly defined.

We simulate workloads as follows. (1) We generate a work-
load of 6K queries, using a distribution 16%, 16%, and 68%
for top-k subgraph, dual-sim and reachability queries, re-
spectively. (2) We use absolute values of normal distribu-
tion |N(u,0)| with (u,0) = (1,1) to generate profit of the
queries. (3) The weighted queries are sent to each opti-
mizer in batch. Given a bounded time, the optimizer selects
queries to be executed.

Effectiveness of Opt_RF. We report the effectiveness of
Opt_RF for the three reachability, dual-simulation, and top-
k querying in Table 7, where the time bound is set to 15 and
30 minutes, respectively.

We observed the following. (1) In all experiments, the
baseline algorithm Opt_Rnd fails to reach an effectiveness
comparable to Opt_RF. (2) In average, Opt_RF outperforms
Opt_Rnd by 5.1 for dual-simulation, by 2.75 for top-k query-
ing, and by 2.23 for reachabilty. (3) Over both bounded

Table 7: Effectiveness of Opt_RF and Opt_Rnd

Dataset Type T (min) | OptRnd (%) | OptRF (%)
— 15 31.18 91.25
Reachability 30 4372 95.76
. - 15 19.61 84.33
DBPedia Dual-sim. 30 28.05 89.32
oo 5 23.32 97.98
p- 30 35.46 98.48
— 15 39.17 92.91
Reachability 30 53.89 95.49
- 15 757 89.72
Freebase Dual-sim 30 13.24 91.03
— 5 33.75 93.37
p 30 46.65 93.79

times, Opt_RF only lost 4.09%, 6.14%, and 11.4% of the
Opt_True profits for top-k querying, reachabilities, and dual-
simulation respectively.

The source of Opt_RF error in compared with Opt_True is
two-fold: (1) inference time of GQPP, and (2) the accuracy
of prediction time. In the first sets of experiments, we have
shown the inference time is negligible and the accuracy of
prediction is high. Note that since knapsack problem is NP-
Complete [24], both Opt_True and Opt_RF, using nearly the
same amount of time, find an approximate solution.

Distribution of profits. We also evaluated the impact of
profit distribution by varying p and o. Fixing the time
bound to 15 minutes and a uniform mixture of query types,
we varied N (p, o) from (1,1) to (10K, 10K). Fig4(d) tells us
that Opt_RF remains to be effective, and is insensitive to the
change of profits distribution. This verifies the robustness
of the optimization strategy in terms of profit distribution.

Mized query workload. We also evaluated the effectiveness
of Opt_RF in the mixed workload. Fixing the time bound
to 15 minutes, we created three sets of query workload over
DBpedia, where each set is dominated by one query class.
We report the effectiveness below.

Distribution | Opt_Rnd (%) | Opt_RF (%)
(70%,15%,15%) 23.93 95.60
(15%,70%,15%) 16.07 92.66
(15%,15%,70%) 23.12 95.50

As shown in the table, (1) The effectiveness of Opt_RF re-
mains to be insensitive to the distribution of query classes;
(2) When dual-simulation are dominant, we observe a
slightly lower quality that is related to its lower predictor’s
accuracy. Moreover, we observe that dual-simulation takes
more time than other query classes on average. Hence the
impact of QPP predictor to the workload optimization be-
comes larger when it makes “mistakes”.

6. RELATED WORK

Query performance prediction has been studied to esti-
mate resource cost and effectiveness of query workloads [13].
We discuss some of this work below.

Relational queries. Learning techniques for QPP have
been applied in relational databases for SQL workloads. The
goal is to predict the response time and resource consump-
tion of SQL queries leveraging: (1) calibrated cost models
by analyzing a set of queries in offline, and adaptively refin-
ing the model units [26]; and (2) statistical machine-learning
predictors constructed from several categories of features in-
cluding plan-level [14], operator-level (e.g., response time of
operators in a parser tree), or both features [2]. The frame-

work in [14] focused on learning to estimate CPU time and
I/0O costs of SQL query plans. In [9], a variation of Principal
Components Analysis (PCA) used to predict the response
time and other run-time characteristics of database requests.
In [2], the authors advocated the use of support vector ma-
chines (SVM) as the specific machine-learning model. They
further proposed a different approach by first building indi-
vidual predictive models for each physical operator and then
combining their predictions.

XML and SPARQL queries. QPP has been studied
for querying semi-structured data, such as XML [30] and
SPARQL [12]. Features are collected from XML parser trees,
query plans, and topological of XML queries (e.g., number
of paths) to predict the response time of XML queries with
regression models. Similarly, regression and Support Vector
Machine are used to predict the performance of SPARQL
queries, where the features are collected from SPARQL al-
gebra and pattern [12]. In contrast to XML and SPARQL
queries, graph analytical queries are not well supported by
algebra and apriori query plans. These methods are not
applicable to approximate graph querying scenarios.

Our work differs from previous work in several ways. (1)
We study QPP for graph analytical queries, without assum-
ing the existence of rigid syntax; (2) We exploit compu-
tationally efficient features that are collected by query in-
put, run-time sketches and algorithms, which do not assume
apriori query plans. Our experimental results over (mixed)
graph analytical workloads verified the effectiveness of pre-
dictors, and suggests feasible QPP tools for online analytics.

7. CONCLUSION

We have presented a learning framework to predict re-
sponse times of graph queries. We introduced learning meth-
ods for both graph pattern queries, defined by subgraph
isomorphism and dual-simulation, and reachability queries.
We show that by exploiting computationally efficient fea-
tures from queries, sketches of the data to be accessed,
and algorithm performance, the response times can be accu-
rately predicted using regression models. We also introduced
a workload optimization strategy for selecting the queries
to be executed under bounded resources while maximizing
profit. Our experimental study over real-world knowledge
bases verifies the effectiveness of the learned predictors as
well as the workload optimization strategy.

The study of QPP for complex graph analytical queries
is in its infancy. We are testing our learning framework for
more query classes that support graph mining and learning
operators and algorithms. We plan to exploit features from
query logs and user-feedback, for more performance metrics,
including relevance, accuracy and the quality of the answers.
Another interesting topic is to develop online machine learn-
ing techniques to support ad-hoc, self-tuning prediction over
evolving query workload.

8. ACKNOWLEDGMENTS

Namaki and Wu are supported in part by NSF IIS-
1633629 and Google Faculty Research Award. Sasani and
Gebremedhin are supported in part by NSF CAREER award
1IS-1553528.

9.
1]

2]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

REFERENCES

D. W. Aha, D. Kibler, and M. K. Albert.
Instance-based learning algorithms. Machine learning,
pages 37-66, 1991.

M. Akdere, U. Cetintemel, M. Riondato, E. Upfal, and
S. B. Zdonik. Learning-based query performance
modeling and prediction. In ICDE, 2012.

M. Arias, J. D. Fernndez, M. A. Martnez-Prieto, and
P. de la Fuente. An empirical study of real-world
sparql queries. 2011.

L. Breiman. Random forests. Machine learning, pages
5-32, 2001.

L. Breiman, J. Friedman, C. J. Stone, and R. A.
Olshen. Classification and regression trees. 1984.

J. Duggan, U. Cetintemel, O. Papaemmanouil, and
E. Upfal. Performance prediction for concurrent
database workloads. In SIGMOD, 2011.

R. Fagin, A. Lotem, and M. Naor. Optimal
aggregation algorithms for middleware. Journal of
computer and system sciences, 66(4):614-656, 2003.
W. Fan, X. Wang, and Y. Wu. Querying big graphs
within bounded resources. In SIGMOD, 2014.

A. Ganapathi, H. Kuno, U. Dayal, J. L. Wiener,

A. Fox, M. Jordan, and D. Patterson. Predicting
multiple metrics for queries: Better decisions enabled
by machine learning. In ICDM, 2009.

Q. Guo, R. W. White, S. T. Dumais, J. Wang, and
B. Anderson. Predicting query performance using
query, result, and user interaction features. In
Adaptivity, Personalization and Fusion of
Heterogeneous Information, 2010.

C. Gupta, A. Mehta, and U. Dayal. Pqr: Predicting
query execution times for autonomous workload
management. In Autonomic Computing, 2008.
ICAC’08. International Conference on, 2008.

R. Hasan and F. Gandon. A machine learning
approach to sparql query performance prediction. In
WI-IAT, 2014.

C. Hauff, D. Kelly, and L. Azzopardi. A comparison of
user and system query performance predictions. In
CIKM, 2010.

J. Li, A. C. Konig, V. Narasayya, and S. Chaudhuri.
Robust estimation of resource consumption for sql
queries using statistical techniques. Proc. VLDB
Endow., pages 1555-1566, 2012.

G. Louppe, L. Wehenkel, A. Sutera, and P. Geurts.
Understanding variable importances in forests of
randomized trees. In NIPS, pages 431-439, 2013.

J. Lu, C. Lin, W. Wang, C. Li, and H. Wang. String
similarity measures and joins with synonyms. In
SIGMOD, 2013.

S. Ma, Y. Cao, W. Fan, J. Huai, and T. Wo.
Capturing topology in graph pattern matching.
VLDB, pages 310-321, 2011.

M. Morsey, J. Lehmann, S. Auer, and A.-C.

Ngonga Ngomo. DBpedia SPARQL Benchmark —
Performance Assessment with Real Queries on Real
Data, pages 454-469. 2011.

M. H. Namaki, R. R. Chowdhury, M. R. Islam, J. R.
Doppa, and Y. Wu. Learning to speed up query
planning in graph databases. In ICAPS, 2017.

20]

(21]

(22]

23]

[24]

(25]

[26]

27]

(28]
29]

(30]

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and

E. Duchesnay. Scikit-learn: Machine learning in
Python. JMLR, pages 2825-2830, 2011.

H. Qu and A. Labrinidis. Preference-aware query and
update scheduling in web-databases. In ICDE, pages
356-365, 2007.

G. Seni and J. F. Elder. Ensemble methods in data
mining: improving accuracy through combining
predictions. Synthesis Lectures on Data Mining and
Knowledge Discovery, pages 1-126, 2010.

S. K. Shevade, S. S. Keerthi, C. Bhattacharyya, and
K. R. K. Murthy. Improvements to the smo algorithm
for svm regression. TNNLS, pages 1188-1193, 2000.
V. V. Vazirani. Approzimation algorithms. Springer
Science & Business Media, 2013.

P. F. Velleman and D. C. Hoaglin. Applications,
basics, and computing of exploratory data analysis.
1981.

W. Wu, Y. Chi, S. Zhu, J. Tatemura, H. Hacigtimiis,
and J. F. Naughton. Predicting query execution time:
Are optimizer cost models really unusable? In ICDE,
pages 1081-1092, 2013.

K. Yang, J. Li, and C. Wang. Missing values
estimation in microarray data with partial least
squares regression. In ICCS, pages 662—669, 2006.

S. Yang, F. Han, Y. Wu, and X. Yan. Fast top-k
search in knowledge graphs. 2016.

S. Yang, Y. Wu, H. Sun, and X. Yan. Schemaless and
structureless graph querying. VLDB, 2014.

N. Zhang, P. J. Haas, V. Josifovski, G. M. Lohman,
and C. Zhang. Statistical learning techniques for
costing xml queries. In VLDB, pages 289-300, 2005.

