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ABSTRACT

This paper presents GRAPE, a parallel system for graph
computations. GRAPE differs from prior systems in its abil-
ity to parallelize existing sequential graph algorithms as a
whole. Underlying GRAPE are a simple programming model
and a principled approach, based on partial evaluation and
incremental computation. We show that sequential graph al-
gorithms can be “plugged into”GRAPE with minor changes,
and get parallelized. As long as the sequential algorithms
are correct, their GRAPE parallelization guarantees to ter-
minate with correct answers under a monotonic condition.
Moreover, we show that algorithms in MapReduce, BSP and
PRAM can be optimally simulated on GRAPE. In addition
to the ease of programming, we experimentally verify that
GRAPE achieves comparable performance to the state-of-
the-art graph systems, using real-life and synthetic graphs.

Keywords
Parallel model; graph computation; partial evaluation; in-
cremental evaluation; scalability

1. INTRODUCTION
Several parallel systems have been developed for graph

computations, e.g., Pregel [35], GraphLab [34], Giraph++
[44] and Blogel [50]. These systems, however, require users
to recast graph algorithms into their models. While graphs
have been studied for decades and a number of sequential
algorithms are already in place, to use Pregel, for instance,
one has to “think like a vertex” and recast the existing algo-
rithms into a vertex-centric model; similarly when program-
ming with other systems. The recasting is nontrivial for peo-
ple who are not very familiar with the parallel models. This
makes these systems a privilege for experienced users only.

Is it possible to have a system such that we can “plug”
sequential graph algorithms into it as a whole (subject to
minor changes), and it parallelizes the computation across
multiple processors, without drastic degradation in perfor-
mance or functionality of existing systems?
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System Category Time(s) Comm.(MB)

Giraph vertex-centric 10126 1.02 × 105

GraphLab vertex-centric 8586 1.02 × 105

Blogel block-centric 226 2.8 × 103

GRAPE auto-parallelization 10.5 0.05

Table 1: Graph traversal on parallel systems

GRAPE. To answer this question, we develop GRAPE, a
parallel GRAPh Engine for graph computations such as
traversal, pattern matching, connectivity and collaborative
filtering. It differs from prior graph systems in the following.

(1) Ease of programming. GRAPE supports a simple pro-
gramming model. For a class Q of graph queries, users only
need to provide three sequential (incremental) algorithms
for Q with minor additions. There is no need to revise the
logic of the existing algorithms, and it substantially reduces
the efforts to “think in parallel”. This makes parallel com-
putations accessible to users who know conventional graph
algorithms covered in undergraduate textbooks.

(2) Semi-automated parallelization. GRAPE parallelizes the
sequential algorithms based on a combination of partial eval-
uation and incremental computation. It guarantees to ter-
minate with correct answers under a monotonic condition,
if the three sequential algorithms provided are correct.

(3) Graph-level optimization. GRAPE inherits all opti-
mization strategies available for sequential algorithms and
graphs, e.g., indexing, compression and partitioning. These
strategies are hard to implement for vertex programs.

(4) Scale-up. The ease of programming does not imply per-
formance degradation compared with the state-of-the-art
systems: vertex-centric Giraph [3] (Pregel) and GraphLab,
and block-centric Blogel. For instance, Table 1 shows the
performance of the systems for shortest-path queries (SSSP)
over US road network [8], with 24 processors. GRAPE out-
performs Giraph, GraphLab and Blogel in both response time
and communication costs (see Section 7 for more results).

A principled approach. To see how GRAPE achieves
these, we present its underlying principles. Consider a
graph G that is partitioned into fragments (F1, . . . , Fn), and
distributed across n processors (P1, . . . , Pn), respectively.
Given a query Q ∈ Q and a fragmented G, GRAPE com-
putes the answer Q(G) to Q in G based on the following.

Partial evaluation. Given a function f(s, d) and the s part of
its input, partial evaluation is to specialize f(s, d) w.r.t. the
known input s [28]. That is, it performs the part of f ’s
computation that depends only on s, and generates a partial
answer, i.e., a residual function f ′ that depends on the as
yet unavailable input d. For each processor Pi in GRAPE,
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Figure 1: Programming Interface of GRAPE

its local fragment Fi is its known input s, while the data
residing at other processors is the yet unavailable input d.
GRAPE computes Q(Fi) in parallel as partial evaluation.

Incremental computation. GRAPE exchanges selected par-
tial results as messages between processors, and computes
Q(Fi ⊕ Mi), by treating message Mi to Pi as updates to
certain status variables associated with nodes and edges in
Fi. It incrementally computes changes ∆Oi to Q(Fi) such
that Q(Fi⊕Mi) = Q(Fi) ⊕ ∆Oi. This is often more efficient
than recomputing Q(Fi⊕Mi) starting from scratch, since in
practice Mi is typically small, and so is Oi. Better still, the
incremental computation may be bounded: its cost depends
only on sizes of the changes Mi to input Fi and changes ∆Oi

to output Q(Fi), not on the size |Fi| of the entire Fi [22,40].

Workflow. Based on these, GRAPE works as follows.

(1) Plug. GRAPE offers a simple programming interface as
shown in Fig. 1. For a class Q of graph queries, users spec-
ify three functions: PEval, IncEval and Assemble in the algo-
rithm panel. They are sequential algorithms for Q, for partial
evaluation, incremental computation and combining partial
results, respectively. They can be picked from a library of
graph algorithms; the only addition is a specification of mes-
sages for communication between processors.

(2) Play. In the configuration panel, users may pick a graph

partition strategy and the number n of processors (Fig. 1).
Given a query Q ∈ Q and a partitioned graph G, GRAPE
parallelizes PEval, IncEval and Assemble across n processors,
and computes Q(G) in three phases as shown in Fig. 2.

(a) Each processor Pi first executes PEval against its local
data Fi, to compute partial answers Q(Fi) in parallel. This
facilities data-partitioned parallelism via partial evaluation.

(b) Then each Pj may exchange partial results with other
processors via synchronous message passing. Upon receiv-
ing message Mi, Pi incrementally computes Q(Fi ⊕Mi) by
IncEval, operating on local Fi “updated” by Mi.

(c) The incremental step iterates until no further updates
Mi can be made to any Fi. At this point, Assemble pulls
partial answers Q(Fi⊕Mi) for i ∈ [1, n] and assembles Q(G).

That is, GRAPE parallelizes sequential algorithms as a
whole, and conducts a simultaneous fixpoint computation.
It guarantees to reach a fixpoint under a monotonic

Q
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coordinator

P

Figure 2: Workflow of GRAPE

condition if the sequential algorithms are correct for Q.
Moreover, it minimizes iterative recomputation by IncEval,
and supports graph-level optimization over Fi.

Example 1: Consider Single Source Shortest Path (SSSP).
Given a graph G with edges labeled with weights, and a
source node s inG (as a queryQ), it is to findQ(G) including
the shortest distance dist(s, v) from s to all nodes v in G.

Using GRAPE, one can pick our familiar Dijkstra’s algo-
rithm [23] as PEval, and a bounded sequential incremental
algorithm of [39] as IncEval. The only addition is that for
each fragment Fi, an integer variable dist(s, v) is declared for
each node v, initially ∞ (except dist(s, s) = 0). As shown in
Fig. 2, PEval first computes Q(Fi); it then repeats IncEval to
compute Q(Fi ⊕ Mi), where messages Mi include updated
(smaller) dist(s, u) (due to new“shortcut” from s) for border
nodes u, i.e., nodes with edges across different fragments.
GRAPE guarantees the termination of the fixpoint compu-
tation, when no more dist(s, v) can be changed to a smaller
value. At this point, Assemble takes a union of Q(Fi) as
Q(G), which is provably correct (see Section 3 for details).

That is, we take sequential algorithms as PEval, IncEval
and Assemble, and specify variables dist(s, v) for updating
border nodes. GRAPE takes care of details such as message
passing, load balancing and fault tolerance. There is no need
to recast the entire algorithms into a new model. ✷

Contributions. We propose GRAPE, from foundation to
implementation, to parallelize sequential graph algorithms.

(1) We introduce the parallel model of GRAPE, by combin-
ing partial and (bounded) incremental evaluation (Section
3). We also present the programming model of GRAPE.
We show how to plug in existing sequential algorithms for
GRAPE to parallelize the entire algorithms, in contrast to
parallelization of instructions or operators [36,41].

(2) We prove two fundamental results (Section 4): (a) As-
surance Theorem guarantees GRAPE to terminate with cor-
rect answers under a monotonic condition when its input se-
quential algorithms are correct; and (b) Simulation Theorem
shows that MapReduce [17], BSP (Bulk Synchronous Paral-
lel) [46] and PRAM (Parallel Random Access Machine) [47]
can be optimally simulated by GRAPE. Hence algorithms
for existing graph systems can be migrated to GRAPE.

(3) We show that a variety of graph computations can be
readily parallelized in GRAPE (Section 5). These include
graph traversal (shortest path queries SSSP), pattern match-
ing (via graph simulation Sim and subgraph isomorphism
SubIso), connected components (CC), and collaborative fil-
tering (CF in machine learning). We show how GRAPE easily
parallelizes their sequential algorithms with minor revisions.
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(4) We outline an implementation of GRAPE (Section 6). We
show how GRAPE supports parallelization, message passing,
fault tolerance and consistency. We also show how easily
GRAPE implements optimization such as indexing, compres-
sion and dynamic grouping, which are not supported by the
state-of-the-art vertex-centric and block-centric systems.

(5) We experimentally evaluate GRAPE (Section 7), com-
pared with (a) Giraph, a open-source version of Pregel, (b)
GraphLab, an asynchronous vertex-centric system, and (c)
Blogel, the fastest block-centric system we are aware of.
Over real-life graphs, we find that in addition to the ease
of programming, GRAPE achieves comparable performance
to the state-of-the-art systems. For instance, (a) GRAPE

is 323, 274 and 7.9 times faster than Giraph, GraphLab and
Blogel for SSSP, 2.7, 2.6 and 1.7 times for Sim, 1.7, 1.4 and
1.7 times for SubIso, and 1.9, 1.4 and 3.8 times for CF on
average, respectively, when the number of processors ranges
from 4 to 24. (b) In the same setting, GRAPE ships on av-
erage 5.6%, 5.6% and 10% of the data shipped by Giraph,
GraphLab and Blogel for SSSP, 1.3%, 1.3% and 1.6% for Sim,
4.7%, 4.7% and 6.5% for SubIso, and 8.1%, 8.1% and 8.7%
for CF, respectively. (c) Incremental steps effectively reduce
the cost and improve the performance of Sim by 2.6 times.
(d) Optimization strategies for sequential algorithms remain
effective for GRAPE and improve Sim by 2 times on average.

Related work. The related work is categorized as follows.

Parallel models and systems. Several parallel models have
been studied for graphs, e.g., PRAM [47], BSP [46] and
MapReduce [17]. PRAM abstracts parallel RAM access
over shared memory. BSP models parallel computations
in supersteps (including local computation, communication
and a synchronization barrier) to synchronize communica-
tion among workers. Pregel [35] (Giraph [3]) implements
BSP with vertex-centric programming, where a superstep
executes a user-defined function at each vertex in parallel.
GraphLab [34] revises BSP to pass messages asynchronously.
Block-centric models [44,50] extend vertex-centric program-
ming to blocks, to exchange messages among blocks.

Popular graph systems also include GraphX [25], GRACE
[49], GPS [42], etc. GraphX [25] recasts graph computa-
tion in its distributed dataflow framework as a sequence of
join and group-by stages punctuated by map operations over
Spark platform. GRACE [49] provides an operator-level, it-
erative programming model to enhance synchronous BSP
with asynchronous execution. GPS [42] implements Pregel
with extended APIs and partition strategies. All these sys-
tems require recasting of sequential algorithms.

GRAPE adopts the synchronization mechanism of BSP.
As opposed to the prior systems, (a) GRAPE aims to par-
allelize existing sequential algorithms, by combining partial
evaluation and incremental computation. (b) As opposed
to MapReduce, it highlights data-partitioned parallelism via
graph fragmentation. For iterative computations, it does not
need to ship the entire state of the graphs in each round [35].
(c) The vertex-centric model of Pregel (synchronized) is a
special case of GRAPE, when each fragment is limited to a
single vertex. The communications of Pregel are via “inter-
processor” messages, and a message from a node often has
to go through several supersteps to reach another node.
GRAPE reduces excessive messages and scheduling cost of
Pregel, since communications within the same fragment are

local. GRAPE also facilitates graph-level optimizations that
are hard to implement in vertex-centric systems; similarly
for GraphLab (asynchronized). (d) Closer to GRAPE are
block-centric models [44, 50]. However, the programming
interface of [44] is still vertex-centric, and [50] is a mix of
vertex-centric and block-centric programming (V-compute
and B-compute). The B-compute interface is essentially
vertex-centric programming, by treating each block as a ver-
tex. Users have to recast existing sequential algorithms into
a new model. In contrast, GRAPE“plugs in” sequential algo-
rithms PEval and IncEval from GRAPE library, and applies
them to blocks without recasting. None of the prior systems
uses (bounded) incremental steps to speed up iterative com-
putations. No one provides assurance on termination and
correctness of parallel graph computations.

Partial evaluation has been studied for certain XML [14]
and graph queries [22]. There has also been a host of work
on incremental graph computation (e.g., [22,40]). This work
makes a first effort to provide a uniform model by combining
partial evaluation and incremental computation together, to
parallelize sequential graph algorithms as a whole.

Parallelization of graph computations. A number of graph
algorithms have been developed in MapReduce, vertex-
centric models and others [22,51]. In contrast, GRAPE aims
to parallelize existing sequential graph algorithms, without
revising their logic and work flow. Moreover, parallel al-
gorithms for MapReduce, BSP (vertex-centric or not) and
PRAM can be easily migrated to GRAPE (Section 4.2).
Prior work on automated parallelization has focused on

the instruction or operator level [37,41] by breaking depen-
dencies via symbolic and automata analyses. There has also
been work at data partition level [52], to perform multi-
level partition (“parallel abstraction”) and enable locality-
optimized access to adapt to different parallel abstraction.
In contrast, GRAPE aims to parallelize sequential algorithms
as a whole. It is to make parallel computation accessible to
end users, while [37,41,52] target experienced developers of
parallel algorithms. There have also been tools for translat-
ing imperative code to MapReduce, e.g., word count [38].
GRAPE advocates a different approach, by parallelizing the
runs of sequential graph algorithms to benefit from data-
partitioned parallelism, without translation. This said, the
techniques of [37,38,41,52] are complementary to GRAPE.

Simulation results. Prior work has mostly focused on sim-
ulations between variants of PRAM with different memory
management strategies, to characterize bounds of slowdown
for deterministic or randomized solutions [26]. There has
also been recent work on simulation of PRAM on MapRe-
duce and BSP [29]. We present optimal deterministic sim-
ulation results of MapReduce, BSP and PRAM on GRAPE,
adopting the notion of optimal simulations of [47].

2. PRELIMINARIES
We start with a review of basic notations.

Graphs. We consider graphs G = (V,E, L), directed or
undirected, where (1) V is a finite set of nodes; (2) E ⊆ V ×
V is a set of edges; (3) each node v in V (resp. edge e ∈ E)
carries L(v) (resp. L(e)), indicating its content, as found in
social networks, knowledge bases and property graphs.

Graph G′ = (V ′, E′, L′) is called a subgraph of G if V ′ ⊆
V , E′ ⊆ E, and for each node v ∈ V ′ (resp. each edge
e ∈ E′), L′(v) = L(v) (resp. L′(e) = L(e)).
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symbols notations
Q, Q a class of graph queries, query Q ∈ Q
G graph, directed or undirected

P0, Pi P0: coordinator; Pi: workers (i ∈ [1, n])
P graph partition strategy
GP the fragmentation graph of G via P
F fragmentation (F1, . . . , Fn)
Mi messages designated to worker Pi

Table 2: Notations

Subgraph G′ is said to be induced by V ′ if E′ consists of
all the edges in G whose endpoints are both in V ′.

Partition strategy. Given a number m, a strategy P par-
titions graph G into fragments F = (F1, . . . , Fm) such that
each Fi = (Vi, Ei, Li) is a subgraph of G, E =

⋃
i∈[1,m] Ei,

V =
⋃

i∈[1,m] Vi, and Fi resides at processor Pi. Denote by

◦ Fi.I the set of nodes v ∈ Vi such that there is an edge
(v′, v) incoming from a node v′ in Fj (i 6= j);

◦ Fi.O the set of nodes v′ such that there exists an edge
(v, v′) in E, v ∈ Vi and v′ is in some Fj (i 6= j); and

◦ F .O =
⋃

i∈[1,m] Fi.O, F .I =
⋃

i∈[1,m] Fi.I; F .O = F .I.

In vertex-cut partition [32], F .O and F .I correspond to en-
try vertices and exit vertices, respectively. We refer to nodes
in Fi.I ∪ Fi.O as the border nodes of Fi w.r.t. P.

The fragmentation graph GP of G via P is an index such
that given each node v in F .O (or F .I), GP(v) retrieves a
set of (i 7→ j) if v ∈ Fi.O and v ∈ Fj .I with i 6= j. As will be
seen shortly, GP helps us deduce the directions of messages.

The notations of this paper are summarized in Table 2.

3. PROGRAMMING WITH GRAPE
We start with the parallel model of GRAPE, and then show

how to program with GRAPE. Following BSP [46], GRAPE
employs a coordinator P0 and a set of m workers P1, . . . , Pm.

3.1 The Parallel Model of GRAPE
Given a partition strategy P and sequential PEval, IncEval

and Assemble for a class Q of graph queries, GRAPE paral-
lelizes the computations as follows. It first partitions G into
(F1, . . . , Fm) with P, and distributes Fi’s across m shared-
nothing virtual workers (P1, . . . , Pm). It maps m virtual
workers to n physical workers. When n < m, multiple vir-
tual workers mapped to the same worker share memory. It
also constructs fragmentation graph GP . Note that G is
partitioned once for all queries Q ∈ Q posed on G.

Parallel model. Given Q ∈ Q, GRAPE computes Q(G) in
the partitioned G as shown in Fig. 2. Upon receiving Q at
coordinator P0, GRAPE posts the same Q to all the workers.
It adopts synchronous message passing following BSP [46].
Its parallel computation consists of three phases.

(1) Partial evaluation (PEval). In the first superstep, upon

receiving Q, each worker Pi computes partial results Q(Fi)
locally at Fi using PEval, in parallel (i ∈ [1,m]). It also iden-
tifies and initializes a set of update parameters for each Fi

that records the status of its border nodes. At the end of the
process, it generates a message from the update parameters
at each Pi and sends it to coordinator P0 (see Section 3.2).

(2) Incremental computation (IncEval). GRAPE iterates
the following supersteps until it terminates. Each superstep
has two steps, one at P0 and the other at the workers.

(2.a) Coordinator. Coordinator P0 checks whether for all
i ∈ [1,m], Pi is inactive, i.e., Pi is done with its local com-

putation and there is no pending message designated for Pi.
If so, GRAPE invokes Assemble and terminates (see below).
Otherwise, P0 routes messages from the last superstep to
workers (Section 3.2), and triggers the next superstep.

(2.b) Workers. Upon receiving message Mi, worker Pi in-
crementally computes Q(Fi ⊕Mi) with IncEval, by treating
Mi as updates, in parallel for all i ∈ [1,m]. It automatically
finds the changes to the update parameters in each Fi, and
sends the changes as a message to P0 (see Section 3.3).

GRAPE supports data-partitioned parallelism by partial
evaluation on local fragments, in parallel by all workers. Its
incremental step (2.b) speeds up iterative graph computa-
tions by reusing the partial results from the last superstep.

(3) Termination (Assemble). The coordinator P0 decides
to terminate if there is no change to any update parameters
(see (2.a) above). If so, P0 pulls partial results from all
workers, and computes Q(G) by Assemble. It returns Q(G).

We now introduce the programming model of GRAPE. For
a class Q of graph queries, one only needs to provide three
core functions PEval, IncEval and Assemble (see Plug Panel
of Fig. 1), referred to as a PIE program. These are conven-
tional sequential algorithms, and can be picked from Library
API of GRAPE. We next elaborate a PIE program.

3.2 PEval: Partial Evaluation
PEval takes a query Q ∈ Q and a fragment Fi of G as

input, and computes partial answers Q(Fi) at worker Pi in
parallel for all i ∈ [1,m]. It may be any existing sequential
algorithm T for Q, extended with the following:

◦ partial result kept in a designated variable; and
◦ message specification as its interface to IncEval.
Communication between workers is conducted via mes-

sages, defined in terms of update parameters as follows.

(1) Message preamble. PEval (a) declares status variables
~x, and (b) specifies a set Ci of nodes and edges relative to
Fi.I or Fi.O. The status variables associated with Ci are
denoted by Ci.x̄, referred to as the update parameters of Fi.
Intuitively, variables in Ci.x̄ are the candidates to be up-

dated by incremental steps. In other words, messages Mi to
worker Pi are updates to the values of variables in Ci.x̄.

More specifically, Ci is specified by an integer d and S,
where S is either Fi.I or Fi.O. That is, Ci is the set of
nodes and edges within d-hops of nodes in S. If d = 0, Ci

is Fi.I or Fi.O. Otherwise, Ci may include nodes and edges
from other fragments Fj of G (see an example in Section 5).

The variables are declared and initialized in PEval. At the
end of PEval, it sends the values of Ci.x̄ to coordinator P0.

(2) Message segment. PEval may specify function aggre-
gateMsg, to resolve conflicts when multiple messages from
different workers attempt to assign different values to the
same update parameter (variable). When such a strategy is
not provided, GRAPE picks a default exception handler.

(3) Message grouping. GRAPE deduces updates to Ci.~x

for i ∈ [1,m], and treats them as messages exchanged among
workers. More specifically, at coordinator P0, GRAPE iden-
tifies and maintains Ci.x̄ for each worker Pi. Upon receiving
messages from Pi’s, GRAPE works as follows.

(a) Identifying Ci. It deduces Ci for i ∈ [1,m] by referencing
fragmentation graph GP , and Ci remains unchanged in the
entire process. It maintains update parameters Ci.x̄ for Fi.
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Input: Fi(Vi, Ei, Li), source vertex s
Output: Q(Fi) consisting of current dist(s, v) for all v ∈ Vi

Message preamble: (designated) /*candidate set Ci is Fi.O*/
for each node v ∈ Vi, an integer variable dist(s, v)

/*sequential algorithm for SSSP (pseudo-code)*/
1. initialize priority queue Que;
2. dist(s, s) := 0;
3. for each v in Vi do
4. if v! = s then
5. dist(s, v) := ∞;
6. Que.addOrAdjust(s, dist(s, s));
7. while Que is not empty do
8. u := Que.pop() // pop vertex with minimal distance
9. for each child v of u do // only v that is still in Q
10. alt := dist(s, u) + Li(u, v);
11. if alt < dist(s, v) then
12. dist(s, v) := alt;
13. Que.addOrAdjust(v, dist(s, v));
14. Q(Fi) := {dist(s, v) | v ∈ Vi}

Message segment: Mi := {dist(s, v) | v ∈ Fi.O};
aggregateMsg = min(dist(s, v));

Figure 3: PEval for SSSP

(b) Composing Mi. For messages from each Pi, GRAPE (i)

identifies variables in Ci.x̄ with changed values; (ii) deduces
their designations Pj by referencing GP ; if P is edge-cut,
the variable tagged with a node v in Fi.O will be sent to
worker Pj if v is in Fj .I (i.e., if i 7→ j is in GP(v)); similarly
for v in Fi.I; if P is vertex-cut, it identifies nodes shared by
Fi and Fj (i 6= j); and (iii) it combines all changed variables
values designated to Pj into a single message Mj , and sends
Mj to worker Pj in the next superstep for all j ∈ [1,m].

If a variable x is assigned a set S of values from different
workers, function aggregateMsg is applied to S to resolve
the conflicts, and its result is taken as the value of x.

These are automatically conducted by GRAPE, which min-
imizes communication costs by passing only updated variable
values. To reduce the workload at the coordinator, alterna-
tively each worker may maintain a copy of GP and deduce
the designation of its messages in parallel.

Example 2: We show how GRAPE parallelizes SSSP. Con-
sider a directed graphG = (V,E, L) in which for each edge e,
L(e) is a positive number. The length of a path (v0, . . . , vk)
in G is the sum of L(vi−1, vi) for i ∈ [1, k]. For a pair (s, v)
of nodes, denote by dist(s, v) the shortest distance from s

to v, i.e., the length of a shortest path from s to v. Given
graph G and a node s in V , GRAPE computes dist(s, v) for
all v ∈ V . It adopts edge-cut partition [13]. It deduces Fi.O

by referencing GP and stores Fi.O at each fragment Fi.

As shown in Fig. 3, PEval (lines 1-14) is verbally identical
to Dijsktra’s sequential algorithm [23]. The only changes are
message preamble and segment (underlined). It declares an
integer variable dist(s, v) for each node v, initially ∞ (except
dist(s, s) = 0). It specifies min as aggregateMsg to resolve
conflicts: if there are multiple values for the same dist(s, v),
the smallest value is taken by the linear order on integers.
The update parameters are Ci.x̄ = {dist(s, v) | v ∈ Fi.O}.

At the end of its process, PEval sends Ci.x̄ to coordinator
P0. At P0, GRAPE maintains dist(s, v) for all v ∈ F .O =
F .I. Upon receiving messages from all workers, it takes the
smallest value for each dist(s, v). It finds those variables with
smaller values, deduces their destinations by referencing GP ,
groups them into message Mj , and sends Mj to Pj . ✷

Input: Fi(Vi, Ei, Li), partial result Q(Fi), message Mi

Output: Q(Fi ⊕Mi)

1. initialize priority queue Que;
2. for each dist(s, v) in M do
3. Que.addOrAdjust(v, dist(s, v));
4. while Que is not empty do
5. u := Que.pop() /* pop vertex with minimum distance*/
6. for each children v of u do
7. alt := dist(s, u) + Li(u, v);
8. if alt < dist(s, v) then
9. dist(s, v) := alt;
10. Que.addOrAdjust(v, dist(s, v));
11. Q(Fi) := {dist(s, v) | v ∈ Vi}

Message segment: Mi = {dist(s, v) | v ∈ Fi.O, dist(s, v) decreased};

Figure 4: IncEval for SSSP

3.3 IncEval: Incremental Evaluation
Given query Q, fragment Fi, partial results Q(Fi) and

message Mi (updates to Ci.x̄), IncEval computes Q(Fi⊕Mi)
incrementally, making maximum reuse of the computation of
Q(Fi) in the last round. Each time after IncEval is executed,
GRAPE treats Fi ⊕Mi and Q(Fi ⊕Mi) as Fi and Q(Fi), re-
spectively, for the next round of incremental computation.

IncEval can take any existing sequential incremental algo-
rithm T∆ for Q. It shares the message preamble of PEval. At
at the end of the process, it identifies changed values to Ci.x̄

at each Fi, and sends the changes as messages to P0. At P0,
GRAPE composes messages as described in 3(b) above.

Boundedness. Graph computations are typically iterative.
GRAPE reduces the costs of iterative computations by pro-
moting bounded incremental algorithms for IncEval.
Consider an incremental algorithm T∆ for Q. Given G,

Q ∈ Q, Q(G) and updates M to G, it computes ∆O such
that Q(G⊕M) = Q(G)⊕∆O, where ∆O denotes changes
to the old output O(G). It is said to be bounded if its cost
can be expressed as a function in the size of |CHANGED| =
|∆M |+ |∆O|, i.e., the size of changes in the input and out-
put [21,40]. Intuitively, |CHANGED| represents the updating
costs inherent to the incremental problem for Q itself. For a
bounded IncEval, its cost is determined by |CHANGED|, not
by the size |Fi| of entire Fi, no matter how big |Fi| is.

Example 3: Continuing with Example 2, we give IncEval in
Fig. 4. It is the sequential incremental algorithm for SSSP

in [40], in response to changed dist(s, v) for v in Fi.I (hereMi

includes changes to dist(s, v) for v ∈ Fi.I deduced from GP).
Using a queue Que, it starts withMi, propagates the changes
to affected area, and updates the distances (see [40]). The
partial result is now the revised distances (line 11).

At the end of the process, IncEval sends to coordinator P0

updated values of those status variables in Ci.x̄, as in PEval.
It applies aggregateMsg min to resolve conflicts.

The only changes to the algorithm of [40] are underlined in
Fig. 4. Following [40], one can show that IncEval is bounded:
its cost is determined by the sizes of “updates” |Mi| and the
changes to the output. This reduces the cost of iterative
computation of SSSP (the while and for loops). ✷

3.4 Assemble Partial Results
Function Assemble takes partial results Q(Fi ⊕ Mi) and

fragmentation graph GP as input, and combines Q(Fi⊕Mi)
to get Q(G). It is triggered when no more changes can be
made to update parameters Ci.x̄ for any i ∈ [1,m].
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Example 4: Continuing with Example 3, Assemble (not
shown) for SSSP takes Q(G) =

⋃
i∈[1,n] Q(Fi), the union of

the shortest distance for each node in each Fi.
The GRAPE process terminates with correct Q(G). The

updates to Ci.x̄ are “monotonic”: the value of dist(s, v) for
each node v decreases or remains unchanged. There are
finitely many such variables. Furthermore, dist(s, v) is the
shortest distance from s to v, as warranted by the correctness
of the sequential algorithms [23,40] (PEval and IncEval). ✷

Putting these together, one can see that a PIE program
parallelizes a graph query class Q provided with a sequential
algorithm T (PEval) and a sequential incremental algorithm
T∆ (IncEval) for Q. Assemble is typically a straightforward
sequential algorithm. A large number of sequential (incre-
mental) algorithms are already in place for various Q. More-
over, there have been methods for incrementalizing graph
algorithms, to get incremental algorithms from their batch
counterparts [9,18]. Thus GRAPE makes parallel graph com-
putations accessible to a large group of end users.

In contrast to existing graph systems, GRAPE plugs in T
and ∆T as a whole, and confines communication specifica-
tion to the message segment of PEval. Users do not have to
think “like a vertex” [34, 35, 44, 50] when programming. As
opposed to vertex-centric and block-centric systems, GRAPE
runs sequential algorithms on entire fragments. Moreover,
IncEval employs incremental evaluation to reduce cost, which
is a unique feature of GRAPE. Note that IncEval speeds up
iterative computations by minimizing unnecessary recompu-
tation of Q(Fi), no matter whether it is bounded or not.

3.5 GRAPE API
GRAPE provides a declarative programming interface for

users to plug in the sequential algorithms as UDFs (user-
defined functions). Upon receiving (sequential) algorithms,
GRAPE registers them as stored procedures in its API library
(Fig. 1), and maps them to a query class Q.

In addition, GRAPE can simulate MapReduce. More
specifically, GRAPE supports two types of messages:

◦ designated messages from one worker to another; and
◦ key-value pairs (key, val), to simulate MapReduce.

The messages generated by PEval and IncEval are marked
key-value or designated. The messages we have seen so far
are designated, and GRAPE automatically identifies their
destinations at coordinator P0, as described in Section 3.2.

If the messages are marked key-value, GRAPE automati-
cally recognizes the key and value segments by parsing the
message declaration in PEval and IncEval. Following MapRe-
duce, it groups the messages by keys at coordinator P0, and
distributes them acrossm workers, to balance the workload.

4. FOUNDATION OF GRAPE
Below we present the correctness guarantees of the parallel

model of GRAPE, and demonstrate the power of GRAPE.

4.1 Correctness of Parallel Model
Intuitively, GRAPE supports a simultaneous fixpoint op-

erator φ(R1, . . . , Rm) over m fragments defined as:

R
0
i = PEval(Q,F

0
i [x̄i]),

R
r+1
i = IncEval(Q,R

r
i , F

r
i [x̄i],Mi),

where i ∈ [1,m], r indicates a superstep, Rr
i denotes partial

results in step r at worker Pi, F
0
i = Fi, F

r
i [x̄i] is fragment Fi

at the end of superstep r carrying update parameters Ci.x̄i,
and Mi indicates changes to Ci.x̄i. The computation pro-
ceeds until it reaches r0 when R

r0
i = R

r0+1
i . At this point,

Assemble(GP , R
r0
1 , . . . , Rr0

m ) is computed and returned.

We next prove a correctness guarantee for the simple
model with designated messages. We start with notations.

(1) We say that GRAPE with PEval, IncEval and P termi-
nates if for all queries Q ∈ Q and all graphs G, there exists
r0 such that at superstep r0, R

r0
i = R

r0+1
i for all i ∈ [1,m].

(2) Denote by G[x̄] a graph G with update parameters x̄. We
say that PEval is correct for Q if for all Q ∈ Q and graphs G,
PEval(Q,G[x̄]) returns Q(G[x̄]). Similarly, IncEval is correct
for Q if IncEval(Q,G[x̄],M,Q(G[x̄])) returns Q(G[x̄ ⊕M ]),
where x̄⊕M denotes x̄ updated by M .

We say that Assemble is correct for Q w.r.t. P if when
GRAPE with PEval, IncEval and P terminates at superstep
r0, Assemble(Q(F1[x̄

r0
1 ]), . . . , Q(Fm[x̄r0

m ])) = Q(G), where
x̄
r0
i denotes the values of parameters Ci.x̄i at round r0.

(3) We say that PEval and IncEval satisfy the monotonic
condition w.r.t. P if for all variables x ∈ Ci.x̄, i ∈ [1,m]
(a) the values of x are computed from values in the active
domain of G, and (b) there exists a partial order px on the
values of x such that IncEval updates x in the order of px.
Intuitively, condition (a) says that x draws values from

a finite domain, and condition (b) says that x is updated
“monotonically” following px. These ensure that GRAPE

parallelization with PEval, IncEval and P terminate.
For instance, dist(s, v) in Example 2 can only be changed

in the decreasing order (i.e., min for aggregateMsg).

Theorem 1 [Assurance Theorem]: Consider sequential
algorithms PEval, IncEval, Assemble for a graph query class
Q, and a partition strategy P. If (a) PEval and IncEval sat-
isfy the monotonic condition w.r.t. P, and (b) PEval, IncEval
and Assemble are correct for Q w.r.t. P, then GRAPE with
PEval, IncEval, Assemble and P guarantees to terminate and
correctly compute Q(G) for all Q ∈ Q and graphs G. ✷

Proof: It suffices to show the following. For all Q and G,
(1) there exists r(Q,G) such that GRAPE terminates at su-

perstep r(Q,G) with deterministic values x̄
r(Q,G)

i for update
parameters Ci.x̄ in fragments Fi of G for i ∈ [1,m]; and (2)

IncEval correctly computes partial answers Q(Fi[x̄
r(Q,G)

i ]) on
Fi at superstep r(Q,G). For if these hold, then GRAPE al-
ways terminates with correct answers by the correctness of
Assemble. We show (1) and (2) by induction on superstep r

in the run for Q and G (see Appendix A for details). ✷

4.2 The Power of GRAPE
GRAPE can readily switch to other parallel models.

Following [47], we say that a parallel model M1 can opti-
mally simulate model M2 if there exists a compilation algo-
rithm that transforms any program with cost C on M2 to
a program with cost O(C) on M1. The cost includes com-
putational and communication cost. For GRAPE, these are
measured by the running time of PEval, IncEval and Assemble

on all the processors, and by the total size of the messages
passed among all the processors in the entire process.

We show that GRAPE optimally simulates popular parallel
models MapReduce [17], BSP [46] and PRAM [47].

Theorem 2 [Simulation Theorem]: (1) all BSP algo-
rithms with n workers in t supersteps can be optimally sim-
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ulated on GRAPE with n workers in t supersteps, without
extra cost in each superstep;

(2) all MapReduce programs using n processors can be opti-
mally simulated by GRAPE using n processors; and

(3) all CREW PRAM algorithms using O(P ) total memory,
O(P ) processors and t time can be run in GRAPE in O(t)
supersteps using O(P ) processors with O(P ) memory. ✷

As a consequence, all algorithms developed for graph
systems based on MapReduce and/or BSP can be read-
ily migrated to GRAPE without much extra cost, including
Pregel [35], GraphX [25], Giraph++ [44] and Blogel [50].

Below we outline a proof (see Appendix A for details).

Bulk-Synchronous parallel model. A BSP algorithm
proceeds in supersteps. Each superstep consists of an in-
put phase, a local computation phase and an output phase.
The workers are synchronized between supersteps. The cost
of a superstep is expressed as w + gh + l, where (a) w is
the maximum number of operations by any worker within
the superstep; (b) h is the maximum amount of messages
sent/received by any workers; (c) g is the communication
throughput ratio, or bandwidth inefficiency; and (d) l is the
communication latency or synchronization periodicity. We
define the throughput and latency for GRAPE similarly.

For Theorem 2(1), each worker of BSP is simulated by a
worker in GRAPE. PEval is defined to perform the same local
computation in the first superstep of BSP, IncEval simulates
the actions of each worker in the later supersteps of the BSP
algorithm, and Assemble collects and combines the partial
results. Message routing and synchronization control adopt
the same strategy of BSP, via designated messages, where
the coordinator acts as the synchronization router. One can
verify that the simulation does not incur extra cost.
In particular, Pregel [35] assigns a virtual worker to each

node (single-vertex fragments). GRAPE reduces its excessive
messages, supports graph-level optimization, and employs
incremental steps to speed up iterative computation.

MapReduce. A MapReduce program is specified by a Map
function and a Reduce function [17]. Its computation is a
sequence of map, shuffle and reduce steps that operate on a
set of key-value pairs. Its cost is measured in terms of (a)
N : the number of rounds of map-shuffle-reduce conducted
in the process, (b) Si: the communication cost of round i,
as the sum of the sizes of input and output for all reducers,
and (c) Hi: the computational cost of round i, as the sum of
the time taken by each mapper and reducer in round i.

For Theorem 2(2), GRAPE uses PEval to perform the map
phase of the first map-shuffle-reduce round, and two super-
steps (IncEval) to simulate each later round, one for map
and the other for reduce, via key-value messages (see Sec-
tion 3.5). We provide a compilation function that given
Map and Reduce functions, constructs (a) PEval as the Map
function, (b) IncEval by invoking Map for odd supersteps
and Reduce for even supersteps, and (c) Assemble by sim-
ply taking a union of partial results. By induction on the
round N of MapReduce, one can verify that the transformed
GRAPE process has running time O(C), where C is the par-
allel running time of the MapReduce computation.

There exist more efficient compilation algorithms by com-
bining multiple MapReduce tasks into a single GRAPE su-
perstep. Moreover, GRAPE employs (bounded) IncEval to
reduce MapReduce cost for iterative graph computations.

Parallel Random Access Machine. PRAM consists of
a number of processors sharing memory, and any processor
can access any memory cell in unit time. The computation is
synchronous. In one unit time, each processor can read one
memory location, execute a single operation and write into
one memory location. PRAM is further classified for access
policies of shared memory, e.g., CREW PRAM indicates
concurrent read and exclusive write (see [47] for details).

It is known that a CREW PRAM algorithm using t time
with O(P ) total memory and O(P ) processors can be sim-
ulated by a MapReduce algorithm in O(t) rounds using at
most O(P ) reducers and memory [29]. By Theorem 2(2),
each MapReduce algorithm in r rounds can be simulated by
GRAPE in 2r supersteps. From these Theorem 2(3) follows.

5. GRAPH COMPUTATIONS IN GRAPE
We have seen how GRAPE parallelizes graph traversal

SSSP (Section 3). We next show how GRAPE parallelizes ex-
isting sequential algorithms for a variety of graph computa-
tions. We take pattern matching, connectivity and collabo-
rative filtering as examples (Sections 5.1–5.3, respectively).

5.1 Graph Pattern Matching
We start with graph pattern matching commonly used in,

e.g., social media marketing and knowledge base expansion.
A graph pattern is a graph Q = (VQ, EQ, LQ), in which

(a) VQ is a set of query nodes, (b) EQ is a set of query edges,
and (c) each node u in VQ carries a label LQ(u).
We study two semantics of graph pattern matching.

Graph simulation. A graph G matches a pattern Q via
simulation if there is a binary relation R ⊆ VQ×V such that
(a) for each query node u ∈ VQ, there exists a node v ∈ V

such that (u, v) ∈ R, referred to as a match of u; and
(b) for each pair (u, v) ∈ R, (a) LQ(u) = L(v), and (b)

for each query edge (u, u′) in Eq, there exists an edge
(v, v′) in graph G such that (u′, v′) ∈ R.

Graph pattern matching via graph simulation is as follows.
◦ Input: A directed graph G and a pattern Q.
◦ Output: The unique maximum relation Q(G).
It is known that if G matches Q, then there exists a unique

maximum relation [27], referred to as Q(G). If G does not
match Q, Q(G) is the empty set. Moreover, Q(G) can be
computed in O((|VQ|+ |EQ|)(|V |+ |E|)) time [19,27].

We show how GRAPE parallelizes graph simulation. Like
SSSP, it adopts an edge-cut partition strategy.

(1) PEval. GRAPE takes the sequential simulation algorithm

of [27] as PEval to compute Q(Fi) in parallel. Its mes-
sage preamble declares a Boolean status variable x(u,v) for
each query node u in VQ and each node v in Fi, indicating
whether v matches u, initialized true. It takes Fi.I as can-
didate set Ci. For each node u ∈ VQ, PEval computes a set
sim(u) of candidate matches v in Fi, and iteratively removes
from sim(u) those nodes that violate the simulation condi-
tion (see [27] for details). At the end of the process, PEval
sends Ci.x̄ = {x(u,v) | u ∈ VQ, v ∈ Fi.I} to coordinator P0.

At coordinator P0, GRAPE maintains x(u,v) for all v ∈
F .I. Upon receiving messages from all workers, it changes
x(u,v) to false if it is false in one of the messages. This is
specified by min as aggregateMsg, taking the order false

≺ true. GRAPE identifies those variables that become false,
deduces their destinations by referencing GP and F .I =
F .O, groups them into messages Mj , and sends Mj to Pj .
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(2) IncEval is the sequential incremental graph simulation

algorithm of [21] in response to edge deletions. If x(u,v) is
changed to false by message Mi, it is treated as deletion of
“cross edges” to v ∈ Fi.O. It starts with changed status
variables in Mi, propagates the changes to affected area, and
removes from sim matches that become invalid (see [21] for
details). The partial result is now the revised sim relation.
At the end of the process, IncEval sends to coordinator P0

updated values of those status variables in Ci.x̄, as in PEval.
IncEval is semi-bounded [21]: its cost is decided by the sizes

of“updates” |Mi| and changes to the affected area necessarily
checked by all incremental algorithms for Sim, not by |Fi|.

(3) Assemble simply takes Q(G) =
⋃

i∈[1,n] Q(Fi), the union

of all partial matches (sim at each Fi).

(4) The correctness is warranted by Theorem 1: the sequen-

tial algorithms [21, 27] (PEval and IncEval) are correct, and
the “monotonic” updates to Ci.x̄: x(u,v) is initially true for
each border node v, and is changed at most once to false.

Subgraph isomorphism. We next parallelize subgraph
isomorphism, under which a match of pattern Q in graph G

is a subgraph of G that is isomorphic to Q. Graph pattern
matching via subgraph isomorphism is to compute the set
Q(G) of all matches of Q in G. It is intractable: it is NP-
complete to decide whether Q(G) is nonempty.

GRAPE parallelizes VF2, the sequential algorithm of [16]
for subgraph isomorphism. It adopts a default edge-cut
graph partition strategy P. It has two supersteps, one for
PEval and the other for IncEval, outlined as follows.

(1) PEval identifies update parameter Ci.x̄. It declares a
status variable xid with each node and edge, to store its id.
It specifies the dQ-neighbor NdQ(v) of each node v ∈ Fi.I,
where dQ is the diameter of pattern Q, i.e., the length of
the shortest path between any two nodes in Q, and Nd(v) is
the subgraph of G induced by the nodes within d hops of v.

At P0, Ci.x̄ is identified for each fragment Fi (this can
be done in parallel by workers as remarked in Section 3.2).
Message Mi is composed and sent to Pi, including all nodes
and edges in Ci.x̄ that are from fragments Fj with j 6= i.
The values of variables in Ci.x̄ (the ids) will not be changed,
and thus no partial order is defined on their values.

(2) IncEval is VF2. It computes Q(Fi ⊕Mi) at each worker
Pi in parallel, on fragment Fi extended with dQ-neighbor
of each node in Fi.I. IncEval sends no messages since the
values of variables in Ci.x̄ remain unchanged. As a result,
IncEval is executed once, and hence two supersteps suffice.

(3) Assemble simply takes the union of all partial matches
computed by IncEval from all workers.

(4) The correctness of the process is assured by VF2 and

the locality of subgraph isomorphism: a pair (v, v′) of nodes
in G is in a match of Q only if v is in the dQ-neighbor of v

′.

5.2 Graph Connectivity
We next study graph connectivity. We parallelize sequen-

tial algorithms for computing connected components (CC).
Consider an undirected graph G. A subgraph Gs of G is

a connected component of G if (a) it is connected, i.e., for
any pair (v, v′) of nodes in Gs, there exists a path between
v to v′, and (b) it is maximum, i.e., adding any node to Gs

makes the induced subgraph no longer connected.
◦ Input: An undirected graph G = (V,E, L).

◦ Output: All connected components of G.
It is known that CC is in O(|G|) time [10].

GRAPE partitions G by edge-cut. It picks a sequential
CC algorithm as PEval. At each fragment Fi, PEval com-
putes its local connected components and creates their ids.
The component ids of the border nodes are exchanged with
neighboring fragments. The (changed) ids are then used
to incrementally update local components in each fragment
by IncEval, which simulates a “merging” of two components
whenever possible, until no more changes can be made.

(1) PEval declares an integer status variable v.cid for each
node v in fragment Fi, initialized as its node id.

PEval uses a standard sequential traversal (e.g., DFS) to
compute the local connected components of Fi and deter-
mines v.cid for each v ∈ Fi. For each local component C,
(a) PEval creates a “root” node vc carrying the minimum
node id in C as vc.cid, and (b) links all the nodes in C to
vc, and sets their cid as vc.cid. These can be completed in
one pass of the edges of Fi via DFS. At the end of process,
PEval sends {v.cid | v ∈ Fi.I} to coordinator P0.

At P0, GRAPE maintains v.cid for each all v ∈ F .I. It
updates v.cid by taking the smallest cid if multiple cids are
received, by taking min as aggregateMsg in the message
segment of PEval. It groups the nodes with updated cids
into messages Mj , and sends Mj to Pj by referencing GP .

(2) IncEval incrementally updates the cids of the nodes in
Fi upon receiving Mi. The message Mi sent to Pi consists
of v.cid with updated (smaller) values. For each v in Mi,
IncEval (a) finds the root vc of v, and (b) for vc and all the
nodes linked to it, directly changes their cids to v.cid.

The incremental computation of IncEval is bounded: it
takes O(|Mi|) time to identify the root nodes, and O(|AFF|)
time to update cids by following the direct link from the root
nodes, where AFF consists of only those nodes with their cid
changed. Hence, it avoids redundant local traversal, and
makes the complexity of IncEval independent of |Fi|.

(3) Assemble merges all the nodes having the same cids in a
bucket as a single connected component, and returns all the
connected components as a set of buckets.

(4) Correctness. The process terminates as the cids of the
nodes are monotonically decreasing, until no changes can be
made. Moreover, it correctly merges two local connected
components by propagating the smaller component id.

5.3 Collaborative Filtering
As an example of machine learning, we consider collabo-

rative filtering (CF) [33], a method commonly used for infer-
ring user-product rates in social recommendation. It takes
as input a bipartite graph G that includes users U and prod-
ucts P , and a set of weighted edges E ⊆ U × P . (1) Each
user u ∈ U (resp. product p ∈ P ) carries (unknown) latent
factor vector u.f (resp. p.f). (2) Each edge e = (u, p) in E

carries a weight r(e), estimated as u.fT ∗p.f (possibly ∅ i.e.,
“unknown”) that encodes a rating from user u to product p.
The training set ET refers to edge set {e | r(e) 6= ∅, e ∈ E},
i.e., all the known ratings. The CF problem is as follows.

◦ Input: Directed bipartite graph G, training set ET .
◦ Output: The missing factor vectors u.f and p.f that

minimizes an error function ǫ(f,ET ), estimated as
min

∑
((u,p)∈ET )(r(u, p)− u.fT p.f) + λ(‖u.f‖2 + ‖p.f‖2).

That is, CF predicts all the unknown ratings by learning
the factor vectors that “best fit” ET . A common practice
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to approach CF is to use stochastic gradient descent (SGD)
algorithm [33], which iteratively (1) predicts error ǫ(u, p) =
r(u, p)−u.fT ∗p.f , for each e = (u, p) ∈ ET , and (2) updates
u.f and p.f accordingly towards minimizing ǫ(f,ET ).

GRAPE parallelizes CF by edge-cut partitioning ET (as a
bipartite graph). It adopts SGD [33] as PEval and an incre-
mental algorithm ISGD [48] as IncEval, using coordinator P0

to synchronize the shared factor vectors u.f and p.f .

(1) PEval. It declares a status variable v.x = (v.f, t) for each

node v, where v.f is the factor vector of v (initially ∅), and
t bookkeeps a timestamp at which v.f is lastly updated.
The candidate set is Ci = Fi.O. PEval is essentially the
sequential SGD algorithm of [33]. It processes a“mini-batch”
of training examples independently of others, to compute the
prediction error ǫ(u, p), and update local factor vectors f in
the opposite direction of the gradient as:

u.f
t = u.f

t−1 + λ(ǫ(u, p) ∗ v.f t−1 − λ ∗ u.f t−1); (1)

p.f
t = p.f

t−1 + λ(ǫ(u, p) ∗ u.f t−1 − λ ∗ p.f t−1). (2)

At the end of its process, PEval sends messages Mi that
contains updated v.x for v ∈ Ci to coordinator P0.

At P0, GRAPE maintains v.x = (v.f, t) for all v ∈ F .I =
F .O. Upon receiving updated values (v.f ′, t′) with t′ > t, it
changes v.f to v.f ′, i.e., it takes max as aggregateMsg on
timestamps. GRAPE then groups the updated vectors into
messages Mj , and sends Mj to Pj as usual.

(2) IncEval is algorithm ISGD of [48]. Upon receiving Mi at
worker Pi, it computes Fi ⊕Mi by treating Mj as updates
to factor vectors of nodes in Fi.I, and only modifies affected
factor vectors as in PEval based solely on the new observa-
tions. It sends the updated vectors in Ci as in PEval.

(3) Assemble simply takes the union of all the factor vectors

of nodes from the workers (to be used for recommendation).

(4) Correctness. The convergence condition in a sequential

SGD algorithm [33,48] is specified either as a predetermined
maximum number of supersteps (as in GraphLab), or when
ǫ(f,ET ) is smaller than a threshold. In either case, GRAPE
correctly infers CF models guaranteed by the correctness of
SGD and ISGD, and by monotonic updates with the latest
changes as in sequential SGD algorithms.

6. IMPLEMENTATION OF GRAPE
We next outline an implementation of GRAPE.

Architecture overview. GRAPE adopts a four-tier archi-
tecture depicted in Fig. 5, described as follows.

(1) Its top layer is a user interface. As shown in Fig. 1,
GRAPE supports interactions with (a) developers who spec-
ify and register sequential PEval, IncEval and Assemble as a
PIE program for a class Q of graph queries (the plug panel);
and (b) end users who plug-in PIE programs from API li-
brary, pick a graph G, enter queries Q ∈ Q, and “play” (the
play panel). GRAPE parallelizes the PIE program, computes
Q(G) and displays Q(G) in result and analytics consoles.

(2) At the core of the system is a parallel query engine.
It manages sequential algorithms registered in GRAPE API,
makes parallel evaluation plans for PIE programs, and exe-
cutes the plans for query answering (see Section 3.1). It also
enforces consistency control and fault tolerance (see below).

(3) Underlying the query engine are (a) an MPI Controller
(message passing interface) for communications between co-
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Figure 5: GRAPE Architecture

ordinator and workers, (b) an Index Manager for loading
indices, (c) a Partition Manager to partition graphs, and
(d) a Load Balancer to balance workload (see below).

(4) The storage layer manages graph data in DFS (dis-
tributed file system). It is accessible to the query engine,
Index Manager, Partition Manager and Load Balancer.

Message passing. The MPI Controller of GRAPE makes
use of a standard MPI for parallel and distributed programs.
It currently adopts MPICH [6], which is also the basis of
other systems such as GraphLab [34] and Blogel [50]. It gen-
erates messages and coordinates messages in synchronization
steps using standard MPI primitives. It supports both des-
ignated messages and key-value pairs (see Section 3).

Graph partition. The Graph Partitioner supports a va-
riety of built-in partition algorithms. Users may pick (a)
METIS, a fast heuristic algorithm for sparse graphs [30],
(b) vertex cut and edge cut partitions [24] for graphs with
small vertex cut-set and edge cut-set, respectively, (c) 1-
D and 2-D partitions [12], which distribute vertex and ad-
jacent matrix to the workers, respectively, emphasizing on
maximizing the parallelism of graph traversal, and (d) a fast
streaming-style partition strategy [43] that assigns edges to
high degree nodes to reduce cross edges. New data partition
strategies can also be plugged into GRAPE.

Graph-level optimization. In contrast to prior graph
systems, GRAPE supports data-partitioned parallelism by
parallelizing the runs of sequential algorithms. Hence all
optimization strategies developed for sequential (batch and
incremental) algorithms can be readily plugged into GRAPE,
to speed up PEval and IncEval over graph fragments. As ex-
amples, below we outline some optimization strategies.

(1) Indexing. Any indexing structure effective for sequen-
tial algorithm can be computed offline and directly used
to optimize PEval, IncEval and Assemble, without recast-
ing. GRAPE supports indices including (1) 2-hop index [15]
for reachability queries; and (2) neighborhood-index [31] for
candidate filtering in graph pattern matching. Moreover,
new indices can be “plugged” into GRAPE API library.

(2) Compression. GRAPE adopts query preserving compres-

sion [20] at the fragment level. Given a query class Q and a
fragment Fi, each worker Pi computes a smaller F c

i offline
via a compression algorithm, such that for any query Q inQ,
Q(Fi) can be computed from F c

i without decompressing F c
i ,

regardless of what sequential PEval and IncEval are used. As
shown in [20], this compression scheme is effective for graph
pattern matching and graph traversal, among others.
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(3) Dynamic grouping. GRAPE dynamically group a set of
border nodes by adding a “dummy” node, and sends mes-
sages from the dummy nodes in batches, instead of one by
one. This effectively reduces the amount of message com-
munication in each synchronization step.

Load balancing. GRAPE groups computation tasks into work
units, and estimates the cost at each virtual worker Pi in
terms of the fragment size |Fi| at Pi, the number of bor-
der nodes in Fi, and the complexity of computation Q. Its
Load Balancer computes an assignment of the work units to
physical workers, to minimize both computational cost and
communication cost (recall from Section 3 that GRAPE em-
ploys m virtual workers and n physical workers, and m > n).
The bi-criteria objective makes it easy to deal with skewed
graphs, when a small fraction of nodes are adjacent to a
large fraction of the edges in G, as found in social graphs.

To the best of our knowledge, these optimization strate-
gies are not supported by the state-of-the-art vertex-centric
and block-centric systems. Indexing and query-preserving
compression for sequential algorithms do not carry over to
vertex programs, and block-centric programming essentially
treats blocks as vertices rather than graphs. Moreover, dy-
namic grouping does not help vertex-level synchronization.

Fault tolerance. GRAPE employs an arbitrator mecha-
nism to recover from both worker failures and coordinator
failures (a.k.a. single-point failures). It reserves a worker
Pa as arbitrator, and a worker S′

c as a standby coordina-
tor. It keeps sending heart-beat signals to all workers and
the coordinator. In case of failure, (a) if a worker fails to
respond, the arbitrator transfers its computation tasks to
another worker; and (b) if the coordinator fails, it activates
the standby coordinator S′

c to continue computation.

Consistency. Multiple workers may update copies of the
same status variable. To cope with this, (a) GRAPE allows
users to specify a conflict resolution policy as function ag-
gregateMsg in PEval (Section 3.2), e.g., min for SSSP and
CC (Section 5), based on a partial order on the domain of sta-
tus variables, e.g., linear order on integers. Based on the pol-
icy, inconsistencies are resolved in each synchronization step
of PEval and IncEval processes. Moreover, Theorem 1 guar-
antees the consistency when the policy satisfies the mono-
tonic condition. (b) GRAPE also supports default exception
handlers when users opt not to specify aggregateMsg. In
addition, GRAPE allows users to specify generic consistency
control strategies and register them in GRAPE API library.

We are also implementing a lightweight transaction con-
troller, to support not only queries but also updates such
as insertions and deletions of nodes and edges. When the
load is light, it adopts non-destructive updates of functional
databases [45]. Otherwise, it switches to multi-version con-
currency control [11] that keeps track of timestamps and
versions, as also adopted by existing distributed systems.

7. EXPERIMENTAL STUDY
We next empirically evaluate GRAPE, for its (1) efficiency,

(2) effectiveness of incremental steps, and (3) compatibility
with optimization techniques developed for sequential algo-
rithms, using real-life graphs. We also report in Appendix
its (4) communication costs, (5) scalability with larger syn-
thetic graphs, and (6) ease of programming. To focus on the
main idea, we compared GRAPE with prior graph systems

by plugging existing sequential algorithms into a preliminary
implementation of GRAPE, without optimization.

Experimental setting. We start with graphs and queries.

Datasets. We used three real-life graphs of different types,
including (1) liveJournal [7], a social network with 4.8 million
entities and 68 million relationships, with 100 labels and
18293 connected components; (2) DBpedia [2], a knowledge
base with 28 million entities of 200 types and 33.4 million
edges of 160 types; and (3) traffic [8], a US road network
with 23 million nodes (locations) and 58 million edges.

To evaluate collaborative filtering (CF), we used another
real-life dataset movieLens [5], which has 10 million movie
ratings (as weighted edges) between a set of 71567 users and
10681 movies; these make a bipartite graph G for CF.

We also used larger synthetic graphs (see Appendix B).

Queries. We randomly generated the following queries. (a)
We sampled 10 source nodes in each graph, and constructed
an SSSP query for each node. (b) We generated 20 pattern
queries for Sim and SubIso, controlled by |Q| = (|VQ|, |EQ|),
the number of nodes and edges, respectively, using labels
drawn from the graphs (see Section 5).

Algorithms. We implemented the core functions PEval,
IncEval and Assemble given in Sections 3 and 5 for these
query classes, registered in the API library of GRAPE. We
used METIS [30] as the default graph partition strategy.
We adopted basic sequential algorithms, and only used opti-
mized Sim to demonstrate how GRAPE inherits optimization
strategies developed for sequential algorithms (Exp-3).

We also implemented algorithms for the queries for Giraph,
GraphLab and Blogel. We used “default” code provided by
the systems when available, and made our best efforts to de-
velop “optimal” algorithms otherwise; the code is available
at [4] for interested reader. As an example, we provide the
code for SSSP in Appendix. As GraphLab supports both syn-
chronized and asynchronized models [34], we implemented
synchronized algorithms for both GraphLab and Giraph for
the ease of comparison. We expect the observed relative
performance trends to hold on other similar graph systems.

We deployed the systems on Aliyun ECS n2.large in-
stances [1], each powered by an Intel Xeon processor with
2.5GHz and 16G memory. We used up to 24 instances. We
used ECS since its average inter-connection speed is close
to real-life large-scale distributed systems. Each experiment
was run 5 times and the average is reported here.

Experimental results. We next report our findings.

Exp-1: Efficiency. We first evaluated the efficiency of
GRAPE over real-life graphs by varying the number n of
processors used, from 4 to 24. We compared its perfor-
mance with Giraph, GraphLab and Blogel. For SSSP and
CC, we experimented with all three real-life datasets. For
Sim and SubIso, we evaluated the queries over liveJournal

and DBpedia, since these queries are meaningful on labeled
graphs only, while traffic does not carry labels.

(1) SSSP. Figures 6(a)-6(c) report the performance of the
systems for SSSP over traffic, liveJournal and DBpedia, re-
spectively. From the results we can see the following.

(a) GRAPE outperforms Giraph, GraphLab and Blogel by 964,
818 and 22 times, respectively, over traffic with 24 processors
(Fig 6(a)). In the same setting, it is 2.5, 2.2 and 1.1 times
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(a) Varying n: SSSP (traffic)
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(b) Varying n: SSSP (liveJournal)
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(c) Varying n: SSSP (DBpedia)
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(d) Varying n: CC (traffic)
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(e) Varying n: CC (liveJournal)
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(f) Varying n: CC (DBpedia)
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(g) Varying n: Sim (liveJournal)
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(h) Varying n: Sim (DBpedia)
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(i) Varying n:SubIso (liveJournal)
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(j) Varying n: SubIso (DBpedia)
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(k) Varying n: CF (|ET |=90%|E|)
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Figure 6: Efficiency of GRAPE

faster over liveJournal (Fig. 6(b)), and 6.2, 3.4 and 1.2 times
faster over DBpedia (Fig. 6(c)). By simply parallelizing se-
quential algorithms without further optimization, GRAPE is
comparable to the state-of-the-art systems in response time.

Note that the improvement of GRAPE over Giraph and
GraphLab on traffic is much larger than on liveJournal and
DBpedia. This is because vertex-centric algorithms take
more supersteps to converge on graphs with large diame-
ters, e.g., traffic. Giraph takes 10752 supersteps over traffic,
while 18 over liveJournal; similarly for GraphLab. In contrast,
GRAPE is not vertex-centric and is more robust; it takes 18
supersteps on traffic and 10 on liveJournal.

(b) All systems take less time when n increases, and GRAPE

scales well with n. The speedup of GRAPE compared to
Giraph and GraphLab becomes larger when more processors
are used; e.g., GRAPE is 818 times faster than Giraph with
4 processors, and is 964 times faster with 24 processors. On
average, GRAPE is 4 times faster for n from 4 to 24, while
it is 3 times for Giraph, 3.2 times for GraphLab and 5 times
for Blogel. These verify the parallel scalability of GRAPE.

(c) GRAPE ships on average 9 ∗ 10−6%, 6.4% and 0.05% of
the data shipped by Giraph, 9 ∗ 10−6%, 6.4% and 0.05% of
GraphLab, and 3.5 ∗ 10−4%, 24% and 0.94% of Blogel, over
traffic, liveJournal and DBpedia, respectively (Figures 8(a)-
8(c); see Appendix B for details). In particular, GRAPE

significantly reduces supersteps. It takes on average 12 su-
persteps, while Giraph, GraphLab and Blogel take 10752,
10752 and 1673 supersteps, respectively. This is because
GRAPE runs sequential algorithms over fragmented graphs,
and triggers cross-fragment communication only when nec-
essary; moreover, IncEval ships only changes to status vari-
able, which are updated monotonically (Theorem 1). In

contrast, Giraph, GraphLab and Blogel pass vertex-vertex
(vertex-block) messages as required by recasted programs.

(2) CC. Figures 6(d)-6(e) report the performance for CC

detection, and tell us the following. (a) Both GRAPE and
Blogel substantially outperform Giraph and GraphLab. For
instance, when n = 24, GRAPE is on average 4.4 and
4.0 times faster than Giraph and GraphLab, respectively.
(b) Blogel is faster than GRAPE, e.g., 0.05s vs. 1.6s over
liveJournal when n = 24. This is because Blogel embeds
the computation of CCs in its graph partition phase as pre-
computation, while the partitioning cost (on average 16.2
seconds) is not included in the response time of Blogel. In
other words, without precomputation, the performance of
GRAPE is already comparable to the near “optimal” case re-
ported by Blogel that is run over graphs already partitioned
into connected components. (c) GRAPE incurs only 4.8%
of communication cost of both Giraph and GraphLab on av-
erage, and is comparable to that of the near “optimal” case
of Blogel (see Figures 8(d)-8(f), Appendix B).

(3) Sim. Fixing |Q| = (8, 15), i.e., patterns Q with 8 nodes
and 15 edges, we evaluated matching via graph simulation
over liveJournal and DBpedia. As shown in Figures 6(g)-6(h),
(a) GRAPE consistently outperforms Giraph, GraphLab and
Blogel over all queries. It is 2.5, 2.7 and 1.3 times faster over
liveJournal, and 3.2, 2.8 and 1.7 times faster over DBpedia

on average, respectively, when n = 24. (b) GRAPE scales
better with the number n of processors than Giraph and
GraphLab, and is comparable to Blogel in parallel scalabil-
ity. (c) GRAPE ships 2.2%, 2.2% and 2.3% (liveJournal),
and 0.45%, 0.45% and 0.9% (DBpedia) of the data shipped
by Giraph, GraphLab and Blogel on average, respectively,
when n = 24 (Figures 8(g)-8(h), Appendix B). In partic-
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ular, GRAPE takes at most 6 supersteps to terminate, while
Giraph, GraphLab and Blogel take 7, 8 and 10 supersteps,
respectively. This again empirically validates Theorem 1,
which allows us to monotonically update status variables.

(4) SubIso. Fixing |Q|=(6, 10), we evaluated subgraph iso-

morphism. As shown in Figures 6(i)-6(j) over liveJournal and
DBpedia, respectively, (a) GRAPE is on average 1.86, 1.49
and 1.98 times faster than Giraph, GraphLab and Blogel, re-
spectively, when n = 24. (b) GRAPE does well over all
queries tested. It takes 2 supersteps and 38.9 seconds on
average, while Giraph, GraphLab and Blogel take 62.4, 54.3
and 64.5 seconds and 4, 4 and 6 supersteps, respectively.
(c) GRAPE scales well with the number n of processors. (d)
GRAPE incurs on average 5.9%, 5.9% and 8.4% of the com-
munication cost of Giraph, GraphLab and Blogel, respectively,
when n = 24 (Figures 8(i)-8(j), Appendix B).

(5) Collaborative filtering (CF). For CF, we used movieLens

[5] with two training sets, compared with the built-in SGD-
based CF in Giraph and GraphLab, and CF implemented
for Blogel. We calibrated the termination condition of all
the systems as the convergence point when the root-mean-
square error of predicted ratings is less than a threshold.

We first tested training set |ET | = 90% |E|. Note that CF
favors“vertex-centric”programming since each user or prod-
uct node only needs to exchanges data with their neighbors,
as indicated by that GraphLab and Giraph outperform Blogel.
Nonetheless, as shown in Fig. 6(k), GRAPE is on average 1.6,
1.1 and 3.4 times faster than Giraph, GraphLab and Blogel,
respectively, when the number n of processors varies from 4
to 24. It scales well with n. In addition, it ships on average
9.2%, 9.2% and 10.2% of data shipped by Giraph, GraphLab
and Blogel, respectively (Fig. 8(k), Appendix B).

We also tested smaller training set (|ET | = 50% |E|). Fig-
ure 6(l) shows that GRAPE outperforms Blogel and Giraph,
and is comparable with GraphLab. It ships at most 11.6% of
data shipped by Giraph, GraphLab and Blogel (Fig. 8(l)).

More results on larger synthetic graphs are reported in
Fig. 9 (Appendix B), which are consistent with their coun-
terparts on real-life graphs reported in Fig. 6.

Exp-2: Incremental computation. We evaluated the ef-
fectiveness of incremental IncEval. We implemented a batch
version of GRAPE for Sim queries, denoted as GRAPENI,
which uses PEval to perform iterative computations and han-
dle the messages, instead of IncEval. It mimics the case when
no incremental computation is used. As shown in Fig. 7(a)
over liveJournal, (1) GRAPE outperforms GRAPENI by 2.1
times with 24 processors; and (2) the gap is larger when less
workers are employed, e.g., 3.4 times when 4 processors are
used. This is because the less workers are used, the larger
fragments reside at each worker, and as a consequence, heav-
ier computation costs are incurred at each superstep. This
verifies that incremental steps effectively reduces redundant
local computations in iterative graph computations. The
results on DBpedia are consistent and are not shown.

Exp-3. Compatibility. We also evaluated the compatibil-
ity of optimization strategies developed for sequential graph
algorithms with GRAPE parallelization. For a query class Q,
a sequential algorithm A and its optimized version A∗ for

Q, denote the speedup of the optimization as T (A)
T (A∗)

. Denote

the running time of GRAPE parallelization of A (resp. A∗) as
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Figure 7: Incremental steps and optimization

Tp(A) (resp. Tp(A
∗)) for a given number n of workers. Ide-

ally, T (A)
T (A∗)

should be close to
Tp(A)

Tp(A∗)
, i.e., GRAPE preserves

the speedup from the optimization. That is, the impact of
the optimization is not “dampened out” by parallelization
overhead such as synchronization and message passing.

We make a case for graph simulation. We evaluated two
sequential algorithms, one from [27], and the other is an opti-
mized version that employs indices to reduce candidates [19].
Using Sim queries over liveJournal, we found that the average
speedup of sequential algorithms is 2.7. Varying n from 4 to
24, we report the speedup of the parallelized algorithms of
GRAPE in Fig. 7(b). The result on DBpedia are consistent
(not shown). The results suggest that the speedup is close
to its sequential counterpart. Such optimization cannot be
easily encoded in vertex programs of Giraph and GraphLab

and the V-mode and B-mode programs of Blogel.

Summary. We find the following. (1) By plugging in se-
quential algorithms, GRAPE performs comparably to state-
of-the-art systems. Over real-life graphs and using from 4 to
24 processors, GRAPE is on average 323, 274 and 7.9 times
faster than Giraph, GraphLab and Blogel for SSSP, 2.7, 2.6
and 1.7 for Sim, 1.7, 1.4 and 1.7 for SubIso, and 1.9, 1.4 and
3.8 for CF, respectively. For CC, it is 3.9 and 3.8 times faster
than Giraph and GraphLab, respectively, and is comparable
to the “optimal” case of Blogel. The results on synthetic
graphs are consistent (Appendix B). (2) Better still, GRAPE
ships on average 5.6%, 5.6% and 10% of the data shipped
by Giraph, GraphLab and Blogel for SSSP, 1.3%, 1.3% and
1.6% for Sim, 4.7%, 4.7% and 6.5% for SubIso, and 8.1%,
8.1% and 8.7% for CF, respectively, in the same setting. For
CC, it incurs 7.3% and 7.3% of data shipment of Giraph and
GraphLab, and is comparable with “optimized” Blogel (Ap-
pendix B). (3) Incremental steps effectively reduce iterative
recomputation. For Sim, it improves the response time by
2.6 times on average. (4) GRAPE inherits the benefit of op-
timized sequential algorithms. For Sim, it is on average 2
times faster by using the algorithm of [19] instead of [27].

8. CONCLUSION
We have proposed an approach to parallelizing sequential

graph algorithms. For a class of graph queries, users can
plug in existing sequential algorithms with minor changes.
GRAPE parallelization guarantees to terminate with correct
answers under a monotonic condition if the sequential algo-
rithms are correct. Moreover, graph algorithms for existing
parallel graph systems can be migrated to GRAPE, without
incurring extra cost. We have verified that GRAPE achieves
comparable performance to the state-of-the-art graph sys-
tems for various query classes, and that (bounded) IncEval

reduces the cost of iterative graph computations.

An open-source GRAPE will be available at [4]. An asyn-
chronous version of GRAPE is also under development.
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Appendix A: Proofs

Proof of Theorem 1

By the correctness of Assemble, PEval and IncEval, we only
need to show the following: for any query Q and graph G,
(1) there exists a natural number r(Q,G) for Q and G such

that GRAPE terminates at superstep r(Q,G), with de-

terministic values x̄
r(Q,G)

i for all update parameters in
all fragments Fi of G (for i ∈ [1,m]); and

(2) IncEval computes partial answers Q(Fi[x̄
r(Q,G)

i ]) on all
fragments Fi(i ∈ [1,m]) of G.

Intuitively, (1) ensures that given Q and G, GRAPE al-
ways terminates in the same state, and (2) guarantees that

partial answers Q(Fi[x̄
r(Q,G)

i ]) are correctly computed for
all fragments Fi (i ∈ [1,m]) of G. If these hold, GRAPE is
guaranteed to return Q(G) by the correctness of Assemble.

(1) We first show that GRAPE terminates. Assume by con-
tradiction that there exist Q and G such that GRAPE does
not terminate. Consider the values of update parameters
in the fragments of G during the run. Since at least one
update parameter has to be updated in a superstep of in-
cremental computation (except the last step), and the total
number of distinct values to update parameters is bounded
by Q and G by the monotonic condition (a) given in Sec-
tion 4.1. Hence there must exist supersteps p and q such
that for each i ∈ [1,m], x̄

p
i = x̄

q
i , i.e., the values to all

the parameters changed at supersteps p and q are the same.
This contradicts the monotonic condition (b) that requires
IncEval to update parameters following a partial order on
their values. Thus for all Q and G, GRAPE must terminate.

To verify that the values to Ci.x̄ when GRAPE terminates
are deterministic for Q and G, we show the following: the
values to Ci.x̄ are updated deterministically at each super-
step r in the run of GRAPE, by induction on r. (a) When
r = 1, i.e., in the first superstep by PEval, the parameters
are initialized deterministically by the definition of PEval.
(b) Assume that when r ≤ k, the parameters in fragments
of G for Q are changed deterministically at step r. Con-
sider step r = k + 1. Since x̄k

i ’s (i ∈ [1,m]) are determin-
istic, IncEval generates Mi to each Fi deterministically, i.e.,
x̄k+1
i = x̄k

i ⊕Mi are updated deterministically. That is, val-
ues to x̄k+1

i are also deterministic, independent of the order
of fragments on which IncEval terminates at each superstep.
Therefore, GRAPE always terminates for Q and G with the
same final state for the update parameters.

(2) We prove that for any Q and G, at any superstep r of the
run of GRAPE for Q and G with PEval, IncEval and Assemble,
partial answers Q(Fi[x̄

r
i ]) (i ∈ [1,m]) are computed on all

fragments Fi of G. We show this by induction on r.

(a) When r = 1. By the correctness of PEval, partial answers
Q(Fi[x̄

1
i ]) are computed by PEval on fragments Fi of G.

(b) Assume that when r = k, GRAPE computes partial an-
swers Q(Fi[x̄

k
i ]) on fragments Fi of G. Consider r = k + 1.

By the correctness of IncEval, GRAPE also correctly com-
putes Q(Fi[x̄

k
i ⊕ M ]) = Q(Fi[x̄

k+1
i ]) on each fragment Fi

of G. Therefore, GRAPE computes partial answers on frag-
ments of G at each superstep in the run for Q and G. ✷

Proof of Theorem 2

(1) Since BSP and GRAPE have the same amount of physical
workers, each worker of BSP is simulated by a worker in

GRAPE. Initially the graph is distributed in the same way as
that in BSP algorithm A. PEval is defined to do the same as
the local computation during the first superstep of A, and it
generates messages that are identical to the ones in A. From
the second superstep, IncEval conducts the actions of each
worker when executing BSP algorithm. Message routing
and synchronization control adopt the same strategy as in
A. Obviously the computation on each worker in GRAPE is
the same as its counterpart in BSP, and all messages sent or
received by each pair of workers within each superstep are
also identical, which lead to an optimal simulation.

(2) We use two supersteps in GRAPE to simulate one map-
shuffle-reduce round of a MapReduce algorithm, including
a map phase and a reduce phase, in the key-value message
mode (see Section 3.5) for messages. More specifically, for a
MapReduce algorithm A that has R rounds, we implement
each round r ∈ [1, R] of A in GRAPE as follows.

(a) Round r = 1: Initially input data is distributed among
the worker by using the same strategy as in A, such that
each worker is assigned the same data as that of the mapper
it simulates. We define PEval to be the same as the mapping
function µ in round 1, i.e., it performs the same computa-
tion as specified in µ and generates an intermediate multiset
of key-value pairs. Moreover, the key-value pairs are treated
as messages and sent to the coordinator P0. Then P0 groups
all the messages (〈key; value〉 pairs) with the same key and
sends them to a worker that simulates the corresponding
reducer dealing with key in A. This process simulates one
shuffle step of A. After that, each worker that receives a
message (list) Lk = 〈k; vij . . .〉 simulates a reducer, i.e., we
let function IncEval in this superstep do the same as the
reducer function ρ in round 1. Note that IncEval uses the
messages received only, ignoring the local data. The outputs
of IncEval are also treated as messages and delivered to P0.
Upon receiving these, P0 routes them based on the distribu-
tion of key-value pairs to mappers in the next round of A,
so that each worker gets the same key-value pairs as that of
the mapper it will simulate in the next round.

(b) Round r > 1: The simulations for latter rounds are sim-
ilar to those of the first round, except that PEval is no longer
used. More specifically, the action of mapping function µ in
round r is simulated by IncEval instead of PEval as in case
(a). Hence, function IncEval is carefully designed to model
the computation of the functions µ and ρ in different rounds
of A. IncEval operates on newly received messages alone, to
simulate MapReduce. When A terminates, P0 stops rout-
ing the messages produced in the last superstep and returns
result in the same way as A, possibly using Assemble.

It is easy to verify that the computational and commu-
nication cost of the GRAPE algorithm is the same as A.
Indeed, every worker simulates a mapper/reducer and con-
ducts the same computation, and all the messages generated
are identical to the key-value pairs transmitted in the shuffle
network of A. Thus, this makes an optimal simulation.

(3) A proof has been given in Section 4.2.

Taken together, GRAPE can easily switch to different
modes, and does not imply degradation of computational
power. We remark that Theorem 1 still holds in these set-
tings as long as their messages can be such organized to
satisfy the monotonic condition described in Section 3.1. ✷
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Figure 8: Communication costs

Appendix B: More on Experimental Study
We report more experimental results, continuing Section 7.

Exp-4: Communication cost. In the same setting of
Exp-1, Figure 8 reports the communication costs of the sys-
tems. We observe that Giraph and GraphLab ship roughly
the same amount of data. GRAPE incurs much less commu-
nication cost than Giraph and GraphLab. It ships on average
2.5%, 7.4%, 15%, 5 ∗ 10−5% and 11.8% of the data shipped
by Giraph and GraphLab for Sim, CC, SubIso, SSSP and CF,
respectively, with 24 processors. While it ships more data
than Blogel for CC for reasons to be given shortly, it only
ships 2.6%, 21%, 1.7∗10−3% and 12.7% of the data shipped
by Blogel for Sim, SubIso, SSSP and CF, respectively. More-
over, the communication cost of GRAPE is insensitive to the
increase of n, i.e., when more processors are used, the com-
munication cost does not change substantially.

(1) SSSP. Figures 8(a)-8(c) show that both GRAPE and
Blogel incurs communication costs that are orders of mag-
nitudes smaller than those of GraphLab and Giraph (whose
curves coincide). For instance, GRAPE ships 0.07% of the
data shipped by GraphLab (same for Giraph) on DBpedia.
This is because vertex-centric programming incurs a large
number of inter-vertex messages. Both block-centric pro-
grams (Blogel) and PIE programs (GRAPE) effectively reduce
unnecessary messages, and trigger inter-block messages only
when necessary. We also observe that GRAPE ships 30%
and 0.9% of the data shipped by Blogel over liveJournal and
DBpedia, respectively. This is because GRAPE ships only
updated values. The improvement over Blogel on traffic is
not substantial because the road network has a small average
node degree, and hence imposes a smaller bound (worst-case
data shipment) on the improvement of GRAPE over Blogel.

(2) CC. Figures 8(d)-8(f) demonstrate similar improvement
of GRAPE over GraphLab and Giraph for CC, e.g., on aver-
age GRAPE ships 5.4% of the data shipped by Giraph and
GraphLab. Blogel is slightly better than GRAPE. As re-
marked in Section 7 for Exp-1(2), this is because Blogel pre-
computes CCs of graphs when partitioning and loading the
graphs, and thus already recognizes connected components
by using an internal partition strategy. While a fair com-
parison should include the time for precomputing CCs in the
evaluation time of CC by Blogel, we cannot identify the com-
munication cost saved by its preprocessing. Thus, the re-
ported communication cost of Blogel is almost 0 in all cases.
Nonetheless, GRAPE incurs communication cost comparable
to the near “optimal” case reported by Blogel, when Blogel

operates on a graph that is already partitioned as CCs.

(3) Sim. Figures 8(g) and 8(h) report the communication
cost for graph simulation over liveJournal and DBpedia, re-
spectively. One can see that GRAPE ships substantially less
data, e.g., on average 1.3%, 1.3% and 1.6% of the data
shipped by Giraph, GraphLab and Blogel, respectively. Ob-
serve that here the communication cost of Blogel is much
higher than that of GRAPE, even though Blogel adopts inter-
block communication. This shows that the extension of
vertex-centric to block-centric by Blogel does not help much
on more complex queries. GRAPE works better than vertex-
centric and block-centric systems on complex queries, by em-
ploying incremental IncEval to reduce excessive messages.

(4) SubIso. Figures 8(i) and 8(j) report the results for
SubIso over liveJournal and DBpedia, respectively. The re-
sults are consistent with Sim queries. On average, GRAPE
ships 4.7%, 4.7%, and 6.5% of the data shipped by Giraph,
GraphLab and Blogel, respectively. Due to the locality of
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Figure 9: Scalability on synthetic graphs

class ShortestPathVertex (Vertex<int, int, int>) {
void Compute (MessageIterator* msgs) {
int mindist = IsSource(vertex id())? 0: INF;
for (; !mesgs->Done();msgs->Next())
mindist = min(mindist, msgs->Value());

if (mindist < GetValue()) {
*MutableValue() = mindist;
OutEdgeIterator iter = GetOutEdgeIterator();
for (; !iter.Done(); iter.Next())
SendMessageTo(iter.Target(), mindist + iter.GetValue()); }

VoteToHalt(); }}

Figure 10: Giraph vertex program SSSP

subgraph isomorphism, matches to a pattern are confined in
connected blocks. Hence Blogel takes advantage of its CC

preserving graph partition, and does better than the case
for Sim. Nevertheless, GRAPE only ships 6.5% of the data
shipped by Blogel on average, and outperforms Blogel.

(5) CF. Figures 8(k) and 8(l) report the results for CF over

movieLens, with 90% and 50% training set ET , respectively.
On average, GRAPE ships 9.2%, 9.2%, and 10.3% of the
data shipped by Giraph, GraphLab and Blogel, respectively,
for |ET | = 90% |E|; and 7.6%, 7.6%, and 8.0% for |ET | =
50% |E|. This verifies that GRAPE is effective in reducing
the communication cost of CF even for algorithms that fa-
vor vertex-centric programming. It also shows that GRAPE
remains effective when the amount of training data varies.

Exp-5: Scalability. We also evaluated the scalability of
GRAPE over larger synthetic graphs. We developed a gener-
ator to produce graphs G = (V,E, L) with L drawn from an
alphabet L of 50 labels. It is controlled by the numbers of
nodes |V | and edges |E|, up to 50M and 200M , respectively.
Fixing n = 24, we varied |G| from (10M, 40M) to

(50M, 200M). As reported in Fig. 9, we tested SSSP, CC,
Sim and SubIso; as the “true” behavior of CF is better char-
acterized by real-world data, we omit the performance of
CF over the synthetic data. The results are consistent with
Fig. 6 over real-life graphs. (a) All systems take longer when
G gets larger, as expected. (b) GRAPE scales reasonably
well with the increase of |G|. With |G| increased by 5 times,
the running time of GRAPE increases by 7 times, 2.7 times,
6 times and 12 times, for SSSP (with linear time sequen-
tial algorithm), CC (linear time), Sim (quadratic time) and
SubIso (exponential time), respectively. (c) GRAPE consis-
tently outperforms Giraph and GraphLab for all queries, by
2.1 and 1.5 times for SSSP, 5.3 and 4.6 times for CC, 3 and
2.4 times for Sim, and 1.7 and 1.4 times for SubIso. The gap
for SSSP is smaller than it on traffic, due to the special fea-
tures of traffic mentioned earlier. GRAPE is 1.1 times faster
than Blogel for SSSP, 1.3 for Sim, and 1.3 for SubIso. Blogel
does better than GRAPE on CC for the reasons given above.

Exp-6: Ease of programming. We also inspected the
usability of GRAPE. Taking SSSP as an example, we ex-

void VCompute(Messages) { /*V-mode computing*/
1. if ( step == 1) {
2. · · · /* initialize source distance, vote to halt otherwise */ }
3. else { for (msg : Messages) {
4. · · · /* update local distance with minimum one in Messages*/ }}
void BCompute(Messages, Container) {/*B-mode computing*/
1. for (vertex : Container) {
2. if (vertex.isactive()) { heap.add(vertex); }}
3. while (heap.size > 0) { /*recasted Dijkstra’s algorithm*/
4. u = heap.peek(); edges = u.value().edges; split = u.value().split;
5. for (edge : edges[0...split]) {
6. · · · /* invokes V-mode computing for each in-block node*/}
7. for (edge : edges[split...edge.size()]){
8. · · · /* out-block msg passing */ }
9. voteToHalt(); } }

Figure 11: Blogel block program for SSSP

amined (a) vertex-centric programs for Giraph (similarly
for GraphLab), and (b) block-centric programs for Blogel.
Parts of the Giraph and Blogel algorithms are shown in Fig-
ures 10 and 11, respectively. We adopt the Giraph code taken
from [35], and use the Blogel code from its developers.

Comparing these programs with their GRAPE counter-
part (Figures 3 and 4), we find the following.

(1) The vertex program for Giraph requires substantial
changes to its corresponding sequential algorithm. As shown
in Fig. 10, the logic flow of a Giraph program for SSSP is
quite different from that of a sequential SSSP algorithm.
Writing such programs requires users to have prior knowl-
edge about the query classes and the design principle of the
vertex-centric model. Moreover, it is challenging to inte-
grate graph-level optimization, e.g., incremental evaluation,
into the vertex programming model. In contrast, the logic
flow of PIE algorithms (GRAPE) remains the same as those
sequential algorithms adapted for PEval and IncEval.

Similar to Giraph, GraphLab code for SSSP (not shown)
requires users to recast the sequential SSSP algorithm into
vertex programs. For example, a sequential operation in an
SSSP algorithm that “collects the distances from the neigh-
bors of a node and updates the distances” is broken down to
two core functions as follows: (a) the “Apply” function up-
dates the local distance at each vertex; and (b) the “Scatter”
function propagates the updated value to the neighbors of a
node. In contrast, a GRAPE program keeps the integrity of
this operation for all the nodes within a fragment.

(2) While Blogel supports block-centric computation, it also
requires recasting of sequential algorithms, as shown in
Fig. 11. Indeed, Blogel programming extends vertex-centric
algorithms (e.g., Giraph) by treating each block as a “vir-
tual vertex”, while still retaining the same message pass-
ing strategies for blocks as in the vertex-centric algorithms.
Hence, its logic flow is along the same lines as Giraph algo-
rithms, and requires recasting of sequential algorithms.
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