
Learning to Speed Up Query Planning in Graph Databases

AAAI Press
Association for the Advancement of Artificial Intelligence

2275 East Bayshore Road, Suite 160
Palo Alto, California 94303

Abstract

Querying graph structured data is a fundamental opera-
tion that enables important applications including knowledge
graph search, social network analysis, and cyber-network se-
curity. However, the growing size of real-world data graphs
poses severe challenges for graph databases to meet the
response-time requirements of the applications. Planning
the computational steps of query processing – Query Plan-
ning – is central to address these challenges. In this pa-
per, we study the problem of learning to speedup query
planning in graph databases towards the goal of improving
the computational-efficiency of query processing via training
queries. We present a Learning to Plan (L2P) framework that
is applicable to a large class of query reasoners that follow
the Threshold Algorithm (TA) approach. First, we define a
generic search space over candidate query plans, and iden-
tify target search trajectories (query plans) corresponding to
the training queries by performing an expensive search. Sub-
sequently, we learn greedy search control knowledge to im-
itate the search behavior of those target search trajectories.
We provide a concrete instantiation of our L2P framework
for STAR, a state-of-the-art graph query reasoner. Our ex-
periments on several benchmark knowledge graphs including
DBpedia, YAGO, and Freebase show that using the query
plans generated by the learned search control knowledge, we
can significantly improve the speed of STAR with little or no
loss in accuracy.

Introduction
Database technology has been successfully leveraged to im-
prove the scalability and efficiency of artificial intelligence
(AI) and machine learning (ML) algorithms (Niu et al. 2011;
Sarkhel et al. 2016; Das et al. 2016; Zhang, Kumar, and Ré
2016). This paper focuses on opposite direction of this suc-
cessful cross-fertilization. We investigate ways to improve
the computational-efficiency of querying databases by lever-
aging the advances from AI search, planning, and learning
techniques. In this work, we study the following problem:
how can we automatically improve the speed of generating
high-quality query plans, for minimizing the response time
to find correct answers, by analyzing training queries drawn
from a target distribution?

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Graph representations are employed for modeling data
in many real-world applications including cyber security,
knowledge graphs, social and biological networks. Graph
querying is the most primitive operation for information ac-
cess, retrieval, and analytics over graph data that enables
applications including knowledge graph search, and cyber-
network security. We consider the problem of querying a
graph database, where the input is a data graph and a graph
query, and the goal is to find the answers to the given query
by searching the data graph. For example, to detect potential
threats, a network security expert may want to “find commu-
nication patterns matching the attack pattern of a newly dis-
covered Worm” over a cyber network (Chin Jr et al. 2014).
This natural language query is issued to a graph database
using a formal graph query language like SPARQL. Specifi-
cally, we study the general top-k graph querying problem as
illustrated in Example 1.

Artist
Band

J.Lo
(Artist)

Jennifer Lealand

Tim & Bob
(Band)Canela Cox

(Artist)

(Artist)

Jennifer Lopez

Query Q

Graph G

a top 1 match

...
0.8

0.7
1.0

Figure 1: Illustration of Top-k graph querying problem.

Example 1: Consider a graph query Q on DBpedia knowl-
edge graph, shown in Figure 1. We want to find the artists
who work with “J.Lo” in a Band. Each of these ambiguous
nodes inQ can have excessive number of candidate matches.
For example, there are 31,771 nodes with label “Band” and
82,853 “Artists” in DBpedia. In addition, “J.Lo” can match
to different people whose first name starts with “J” or last-
name starts with “Lo”. While “Jennifer Lopez” is the perfect
match for this query, users may want to get other similar
people like “Jennifer Hudson”, etc. However, the matching
score for each candidate node can be different due to dif-
ferent node context. It is computationally expensive to first
expand all of those matches to find the query structure and
then rank them based on their matching scores. 2

The growing size of real-world data graphs poses severe
challenges for graph databases to meet the response-time
requirements of the applications. For example, knowledge

graphs employed in health-care, and cyber networks em-
ployed in network monitoring applications may involve bil-
lions of linked entities with rich relational information. Plan-
ning the computational steps of query processing – Query
Planning – is central to address these challenges.

In this work, we answer the main research question in
the context of Threshold Algorithm (TA) framework (Fa-
gin, Lotem, and Naor 2003) for query processing that is
widely popular in both graph and relational databases. The
TA framework works as follows. First, the given query is
decomposed into sub-queries (e.g., star shaped queries for
graph query). Subsequently, it follows a fixed fetch-and-
verify strategy iteratively until a termination criterion (via
estimates of lower and upper bound) is met. Nevertheless,
the framework has two major drawbacks: 1) It is very con-
servative in the upper bound estimation. This often leads to
more computation without improvement in results; and 2) It
applies static fetch and join policy for all the queries that will
likely degrade its performance over heterogeneous query
set. In their seminal Gödel prize-winning work, Fagin and
colleagues suggested the usefulness of finding good heuris-
tics to further improve the computational-efficiency of TA
framework as an interesting open problem (Fagin, Lotem,
and Naor 2003). Our work addresses this open problem with
strong positive results. To the best of our knowledge, this
is the first work that tightly integrates learning and search
to improve the computational-efficiency of query processing
over graph databases.

We develop a general Learning to Plan (L2P) frame-
work that is applicable to a large class of query reason-
ers that follow the Threshold Algorithm (TA) approach.
First, we define a generic search space over candidate
query plans, where the query plan of TA framework can
be seen as a greedy search trajectory. Second, we perform
a computationally-expensive search (heuristic guided beam
search) in this search space, to identify target search trajecto-
ries (query plans) corresponding to the training queries, that
significantly improve over the computation-time of query
plans from the TA framework. Third, we learn greedy poli-
cies in the framework of imitation learning to mimic the
search behavior of these target trajectories to quickly gen-
erate high-quality query plans. We also provide a concrete
instantiation of our L2P framework for STAR, a state-of-
the-art graph query reasoner and perform a comprehensive
empirical evaluation of L2P-STAR on three large real-world
knowledge graphs. Our results show that L2P-STAR can
significantly improve the computational-efficiency of query
processing over STAR with negligible loss in accuracy.

Outline of the Paper. The remainder of the paper is orga-
nized as follows. First, we provide background on graph
query processing and TA framework that forms the basis
of this work. Second, we give our problem setup for learn-
ing greedy control knowledge to produce high-quality query
plans. Next, we present our learning to plan (L2P) frame-
work, followed by a concrete instantiation of L2P for STAR
query processing. We finally present experimental results
and conclude.

Background
In this section, we provide the background on graph query
processing and the general TA framework as applicable to
both graph and relational databases.
Data Graph. We consider a labeled and directed data graph
G=(V,E,L), with node set V and edge set E. Each node
v ∈ V (edge e ∈ E) has a label L(v) (L(e)) that specifies
node (edge) information, and each edge represents a rela-
tionship between two nodes. In practice, L may specify het-
erogeneous attributes, entities, and relations (Lu et al. 2013).
Graph Query. We consider query Q as a graph (VQ, EQ).
Each query node in Q provides information/constraints
about an entity, and an edge between two nodes specifies
the relationship posed on the two nodes. Formal graph query
languages including SPARQL (Prud’Hommeaux, Seaborne,
and others 2008), Cypher (Corporation 2013), and Grem-
lin (O’Brien et al. 2010) can be used to issue graph queries
to a database such as Neo4j(neo4j.com). Since existing
graph query languages are essentially subgraph queries, we
can invoke a query transformer to work with different query
languages (Kim et al. 2015). Therefore, our work is general
and is not tied to any specific query language.
Subgraph Matching. Given a graph query Q and a data
graph G, a match of Q in G is a mapping φ ⊆ VQ×V , such
that (1) φ is an injective function, i.e., for any pair of distinct
nodes ui and uj in VQ, φ(ui) 6= φ(uj); and (2) for any edge
(vi, vj) ∈ EQ, (φ(vi), φ(vj)) ∈ E. The match φ(Q) is a
complete match if |Q| = |φ(Q)|, where |Q| denotes the size
of Q, i.e., the sum of the number of nodes and edges in Q
(similarly for |φ(Q)|). Otherwise, φ(Q) is a partial match.

Matching Score. Given Q and a match φ(Q) in G, we as-
sume the existence of a scoring function F (·) which com-
putes, for each node v ∈ VQ (resp. each edge e ∈ EQ),
a matching score F (φ(v)) (resp. F (φ(e))). The matching
score of φ is computed by a function F (φ(Q)) as

F (φ(Q)) =
∑
v∈VQ

F (v, φ(v)) +
∑
e∈EQ

F (e, φ(e)) (1)

One can use any similarity function such as acronym, ab-
breviation, edit distance etc. We adopt Leveneshtein func-
tion (Navarro 2001) to compute node/edge label similarity,
and employ the R-WAG’s ranking function that incorporates
both label and structural similarities (Roy, Eliassi-Rad, and
Papadimitriou 2015) to compute matching score F (·).
Top-k Graph Querying. Given Q, G, and F (·), the top-
k subgraph querying problem is to find a set of k matches
Q(G, k), such that for any match φ(Q) /∈ Q(G, k), for all
φ′(Q) ∈ Q(G, k), F (φ′(Q)) ≥ F (φ(Q)).

Top-k Search Paradigm. Top-k graph querying problem
is known to be intractable (NP-hard). The common prac-
tice in existing top-k graph search techniques is to fol-
low a conventional Threshold Algorithm (TA) style ap-
proach (Ding et al. 2014; Zeng et al. 2012; Zou et al. 2014;
Yang et al. 2016).
TA Framework for Query Processing. The TA framework
was originally developed for relational databases (Fagin,

Algorithm 1 TA Framework for Graph Search
Input: a graph query Q, a data graph G, integer k
Output: top-k match set Q(G, k)

1: Decompose Q into a set of sub-queriesQ
2: repeat
3: fetch k partial matches for sub-queries in round-robin way
4: join to assemble new matches;
5: update lowerbound (LB) and upperbound (UB);
6: until UB > LB
7: return Q(G, k)

J.Lo

Artist Band

Artist Band

Jennifer
Lopez

Canela
Cox

Tim &
Bob

Canela
Cox

Tim &
Bob

Q1
Q2

Sorted
Access

partial
answers

ranked

...

...
...

...

...

top-1
Jennifer
Lopez

Canela
Cox

Tim &
Bob

Join
(Fetch)

Score=2.5

redundant
fetches

Answers

*

*

Figure 2: Illustration of TA framework via STAR query pro-
cessing.
Lotem, and Naor 2003), and has been extended to graph
databases as well. It consists of three main steps.
Query Decomposition. A query Q is decomposed into a set
of sub-queries {Q1, . . . , QT }without loss of generality. The
procedure then initializes one list for each sub-query to store
the partial answers. For relational databases, sub-queries can
correspond to individual attributes (Fagin, Lotem, and Naor
2003); and for graph databases, sub-queries can correspond
to nodes or edges or stars (Yang et al. 2016) or spanning
trees (Cheng, Zeng, and Yu 2013).

Partial Answer Generation. For each sub-query Qi, it per-
forms a iterative exploration as follows. 1) It computes and
fetches k partial matches of Qi; and 2) It verifies if the par-
tial matches can be joined with other “seen” partial matches
to be able to improve the top-k matching score. The above
step is repeated until k matches are identified and it is im-
possible to generate better matches.

Early Termination. TA dynamically maintains 1) a lower
bound (LB) as the smallest top-k match score so far; and 2)
an upper bound (UB) to estimate the largest possible score
of a complete match from unseen matches. For example, an
upper bound can be established by aggregating the score of
the next match from each list. If UB is smaller than the cur-
rent lower bound LB, TA terminates.

Figure 2 illustrates TA framework for the query Q shown
in Figure 1, where each sub-query takes the form of a star
(i.e., graph with a unique pivot and some adjacent nodes).
Limitations. The main limitations of TA framework are as
follows. 1) Applying fixed fetch-and-verify strategy for all
the queries (e.g., always fetch a fixed amount of partial an-
swers) may not provide robust performance due to diversity

Algorithm 2 L2P for TA Framework
Input: Q = graph query, G = data graph, Πselect = selection
policy, Πfetch = fetching policy
1: s← I(Q) // initial state
2: TERMINATE← False
3: while not TERMINATE do
4: aselect ← Πselect(s) // select the sub-query
5: if aselect == HALT then
6: TERMINATE = True
7: else
8: afetch ← Πfetch(s, aselect) // how many to fetch
9: s← Apply (aselect, afetch) on s

10: end if
11: end while
12: return Top-k answers A(s) corresponding to s

in queries; 2) The performance of TA framework highly de-
pends on a good estimation of the upper bound. Enforcing a
fixed estimation scheme can be loose, leading to “redundant
fetches” with little improvement in quality of answers (see
Figure 2). More adaptive stopping criterion is desirable; and
3) It is hard to adapt TA framework to different resource con-
straints (e.g., memory, response time, accuracy, I/O cost).

Motivated by the above observations, we explore planning
and learning techniques to automatically induce adaptive
data-driven search strategies within the TA framework to
optimize the performance of top-k graph query processing.

Problem Setup
We assume the availability of a training set of query-answer
pairs {(Q,A∗)} drawn from an unknown target distribution
D, where Q is a graph query and A∗ is the corresponding
output answer produced by a TA style algorithm P on data
graph G. The accuracy of a query plan (sequence of compu-
tational steps for query processing) can be measured using
a non-negative loss function L such that L(Q, Â,A∗) is the
loss associated with processing a particular input query Q to
produce answer Â when the correct answer is A∗. The goal
of learning is to quickly produce high-quality query plans
for minimizing the response time to find correct answers for
input queries drawn from the target distribution D.

In this work, we formulate the graph query planning prob-
lem in a search-based learning framework. There are three
key elements in this framework: 1) the Search space Sp
whose states correspond to candidate computational states
within the TA framework; 2) the Selection policy Πselect

that is used to select the sub-query to fetch partial matches
at each state; and 3) the Fetching policy Πfetch that is used
to decide how many partial matches to fetch for the selected
sub-query at each state.
Generic Search Space. Sp is a 2-tuple 〈I, A〉, where I is
the initial state function, A gives the set of possible ac-
tions in a given state. In our case, s0 = I(Q) corresponds
to a state with one empty list for each sub-query decom-
position of Q (say T decompositions without loss of gen-
erality). A(si) consists of actions that correspond to can-
didate computational steps (or equivalently search opera-
tors for query plans) at state si. Each action a is of the

Algorithm 3 Target Query Plan Computation via Beam
Search
Input: (Q,A∗) = graph query and answer pair, G = data graph,
(I, A) = Search space, b = beam width, H = weighted heuristic
function
1: B ← s0 = I(Q) // Initial state
2: TERMINATE← False
3: while not TERMINATE do
4: C ← ∅ // Candidate set
5: for each state s ∈ B do
6: if A(s) == A∗ then
7: TERMINATE = True
8: s∗ = s
9: else

10: Expand s and add all next states to C // Expansion
11: end if
12: end for
13: B ← Top-b scoring states in C via heuristic function H(s)

// Pruning
14: end while
15: return state-action pair sequence from s0 to s∗

form (i, δ) and corresponds to fetching δ additional partial
matches for sub-query i, where i ∈ {1, 2, · · · , T} ∪HALT
and δ ∈ [δmin, δmax]. When HALT action is chosen at state
si (terminal state), we stop the search and return the top-k
answer A(si).

We focus on greedy search. The decision process for
producing query plans corresponds to choosing a sequence
of actions leading from the initial state using both Πselect

and Πfetch, until Πselect selects the HALT action (termi-
nal state). Πselect and Πfetch are parametrized by feature
functions ψ1 and ψ2. We want to learn the parameters of
both Πselect and Πfetch using the training queries, with the
goal of quickly producing query plans for minimizing the
response time to produce correct answers on unseen queries
drawn from D.

Learning to Plan (L2P) Framework
Inspired by the recent success of imitation learning ap-
proaches for solving sequential decision-making tasks
(Weiss and Taskar 2013; He, Daumé III, and Eisner 2014;
2013; Pinto and Fern 2014), we formulate and solve the
problem of learning policies to improve the speed of produc-
ing high-quality query plans in the framework of imitation
learning.
Overview of Imitation Learning. In traditional imitation
learning, expert demonstrations are provided as training data
(e.g., demonstrations of a human expert driving a car), and
the goal of the learner is to learn to imitate the behavior of an
expert performing a task in a way that generalizes to similar
tasks or situations. Typically this is done by collecting a set
of trajectories of the expert’s behavior on a set of training
tasks. Then supervised learning is used to find a policy that
can replicate the decisions made on those trajectories. Often
the supervised learning problem corresponds to learning a
classifier or regressor to map states to actions, and off-the-
shelf tools can be used.

The two main challenges in applying imitation learn-
ing framework to query planning are: 1) Obtaining a high-

quality oracle policy that will provide the supervision for
the imitation learning process (oracle construction); and 2)
Learning search control policies that can make search deci-
sions in a computationally-efficient manner (fast and accu-
rate decision-making). We provide solutions for these two
challenges below.

Oracle Construction
In this section, we describe a generic procedure to compute
high-quality query plans for TA framework. We will start by
defining the needed terminology.
1) Terminal state. For a given query-answer pair (Q,A∗), a
state s in the search space Sp is called a terminal state if the
corresponding top-k answer A(s) is same as the one (i.e.,
A∗) produced by running the given TA style algorithm P on
data graph G.
2) Target query plan. For a given query Q, a se-
quence of actions from initial state to terminal state,
(s0, a0), · · · , (sN ,∅), is called a target query plan (TQP),
where s0 is the initial state and sN is the terminal state.
3) Quality of a target query plan. For a given query Q, the
quality of a TQP is defined as the computation time taken
to execute the query plan to produce the top-k answer. In
other words, quality corresponds to speedup w.r.t. computa-
tion time of TA style algorithm P on the same query.

The goal of oracle construction is to compute high-
quality target query plans for each training query-answer
pair (Q,A∗). A naive approach would be to perform depth-
bounded exhaustive search in search space Sp instantiated
for each training query. Since the naive approach is imprac-
tical, we resort to heuristic guided beam search and define
effective heuristics to make the search efficient.
Heuristics. We define multiple heuristics that can poten-
tially guide the search to uncover high-quality target query
plans. These heuristics are defined as a function of the given
search state s and the terminal state s∗ of the TA style algo-
rithm P . We define the following three concrete heuristics
noting that our approach allows to add additional heuristics
as needed: H1) Total computation time to reach state s from
initial state s0 = I(Q) normalized w.r.t. time taken by the
TA style algorithm P; H2) The cost (or score) of answer
A(s) normalized w.r.t. the score of A∗ (Arai et al. 2007);
and H3) The cumulative difference between the size of list
(with partial matches) for each sub-query from states s and
s∗ normalized w.r.t. the total size of all lists for s∗.
Target Query Plan Computation via Beam Search. We
propose to combine multiple heuristics by their weighted
linear combination: H(s)=

∑m
i=1 wi · Hi(s). For a given

weight vector w ∈ <m, the heuristic function is fully speci-
fied. For a given training query-answer pair (Q,A∗), we per-
form breadth-first beam search with beam width b starting at
initial state s0 = I(Q), until we uncover a terminal state
(i.e., A(s) is same as A∗). The sequence of actions leading
from s0 to terminal state s is identified as the target query
plan for Q (see Algorithm 3).
Computing Weights via Bayesian Optimization. We don’t
know the appropriate weights w1, w2, · · · , wm that will im-
prove the effectiveness of the weighted heuristic functionH .
We define the value of a candidate weight vector w ∈ <m

over a set of training queries T , V(w, T), as the average
quality of the identified target query plans (via Algorithm 3)
for all queries in T with the corresponding heuristic H . Our
goal is to find the weight vector w ∈ <m that maximizes
V(w, T):

w∗ = argmaxw∈<m V(w, T) (2)

The main challenge in solving this optimization problem
is that evaluating the value of a candidate weight vector is
computationally-expensive. In recent years, Bayesian Op-
timization (BO) (Shahriari et al. 2016) has emerged as a
very popular framework for solving optimization problems
where the function evaluations are computationally expen-
sive (e.g., hyper-parameter tuning of machine learning algo-
rithms). Therefore, we propose to find the best weights via
BO tools. In short, BO algorithms build a statistical model
based on the past function evaluations; and execute a se-
quential decision-making process that intelligently explores
the solution space guided by the statistical model, to quickly
reach a near-optimal solution.

Learning Greedy Policies via Imitation Learning
Our goal is to learn a greedy policy (Πselect,Πfetch) that
maps states to actions in order to imitate the target query
plans computed via oracle construction. We assume that for
any training query-answer pair (Q,A∗), we can get the ora-
cle query plan (s∗0, a

∗
0), (s∗1, a

∗
1), · · · , (s∗N ,∅) via Algorithm

3, where s∗0 is the initial state and s∗N is the terminal state.
The goal is to learn the parameters of Πselect and Πfetch

such that at each state s∗i , a∗i ∈ A(s∗i) is selected.

Algorithm 4 Learning Greedy Policy via Exact Imitation
Input: T = Training data
1: Initialize the set of classification examples D1 = ∅
2: Initialize the set of regression examples D2 = ∅
3: for each training example (Q,A∗) ∈ T do
4: Compute the target query plan (s∗0, a

∗
0), · · · , (s∗N ,∅)

5: for each search step t = 0 to N do
6: Generate classification example Ct and regression exam-

ple Rt to imitate (s∗t , a
∗
t)

7: Aggregate training data: D1 = D1 ∪Ct and D2 = D2 ∪
Rt

8: end for
9: end for

10: Πselect = Classifier-Learner(D1)
11: Πfetch = Regression-Learner(D2)
12: return greedy policy (Πselect,Πfetch)

Exact Imitation Approach. At each state s∗t on the tar-
get path of a training example (Q,A∗), we create one clas-
sification example with ψ1(s∗t) as input and a∗t (1) (selec-
tion action) as output; and one regression example with
ψ2(s∗t , a

∗
t (1)) as input and a∗t (2) (fetching action) as out-

put (Khardon 1999). The sets of aggregate classification and
regression imitation examples collected over all the training
examples are then fed to a classifier and regression learner
pair, to learn the parameters of Πselect and Πfetch (see Al-
gorithm 4). This reduction allows us to leverage powerful
off-the-shelf classification and regression learners.

In theory and practice, policies learned via exact imita-
tion can be prone to error propagation: errors in the pre-
vious state may result in a next state that is very different
from the distribution of states the learner has seen during the
training, and contributes to more errors. To mitigate error-
propagation problem, we can employ an advanced learning
approach like DAgger (Ross, Gordon, and Bagnell 2011).
DAgger Algorithm. The key idea behind DAgger is to
generate additional training data so that the learner is able
to learn from its mistakes. DAgger is an iterative algo-
rithm, where each iteration adds imitation data to an ag-
gregated data set. The first iteration follows the exact
imitation approach. After each iteration, we learn policy
(Πselect,Πfetch) using the current data. Subsequent itera-
tions perform query planning using the learned policy to
generate a trajectory of states for each training query. At
each decision along this trajectory, we add a new imitation
example if the search decision of the learned policy is dif-
ferent from the oracle policy. In the end, we select the best
policy over all the iterations via performance on validation
data. To select among several imperfect policies with vary-
ing speed and accuracy performance, we pick the policy with
the highest accuracy. This principle is aligned with our learn-
ing objective.
Handling General Query Planning
In this section, we provide some discussion on ways to ex-
tend our L2P framework to more general query planning go-
ing beyond the TA style query processing.

There are three key elements in the L2P framework: 1)
Search space over query plans; 2) Policy for producing query
plans; and 3) Oracle query plans to drive the learning pro-
cess. The search operators for query plans are specific to
each query processing approach. We need to consider ad-
ditional search operators (e.g., different δ values in the TA
framework) to be able to construct high-quality candidate
query plans in the search space. The form of the policy will
depend on the search operators or actions at search states
(e.g., classifier-regressor pair to select the sub-query and
number of partial matches to fetch in the TA framework).
For computing the oracle plans needed to learn the policy,
heuristic-guided beam search is a generic approach, but we
need to define effective heuristics as applicable for the given
query evaluation approach. A more generic off-the-shelf al-
ternative is to consider Approximate Policy Iteration (API)
algorithm (Fern, Yoon, and Givan 2006). API starts with a
default policy and iterates over the following two steps. Step
1: Generate trajectories of current rollout policy from initial
state; and Step 2: Learn a fast approximation of rollout pol-
icy via supervised learner (e.g., classifier) to induce a new
policy. Indeed, each iteration of API can be seen as imi-
tation learning, where trajectories of current rollout policy
correspond to expert demonstrations and the new policy is
induced using the exact imitation algorithm (Fern 2016).

L2P Instantiation for STAR
In this section, we provide a concrete instantiation of our
L2P framework for STAR, a state-of-the-art graph query rea-
soner based on the TA framework.

Overview of STAR Query Processing. STAR is an in-
stantiation of TA framework, where the graph query is de-
composed into a set of star-shaped queries. A very recent
work (Yang et al. 2016) showed both theoretically and em-
pirically that star decomposition provides a good trade-off
between sub-query evaluation cost and the number of candi-
date partial answers. In particular, partial answers for each
star query can be efficiently generated on demand with a
guaranteed sorted access as per the given scoring function
F (·).

Example 2: Figure 2 illustrates STAR query processing to
find the top-1 answer for the query Q shown in Figure 1. It
first decomposes Q into two stars (Q∗1 and Q∗2), i.e., graphs
with a unique pivot and one or more adjacent nodes. It then
fetches partial answers for each star query in a sorted man-
ner, and joins the partial answers whenever possible, until it
finds a complete match and termination criteria is met. 2

Search Space. Suppose the given graph query Q is decom-
posed into a set of star-queries {Q∗1, . . . , Q∗T } without loss
of generality. The initial state s0 = I(Q) corresponds to
a state with one empty list for each star query decompo-
sition of Q. Recall that each action a (i.e., search opera-
tor for query plan) is of the form (i, δ) and corresponds
to fetching δ additional partial matches for star query i,
where δ ∈ [δmin, δmax]. We employed δmin = 10 and
δmax = 200 (candidate number of partial matches to fetch),
and considered candidate choices in the multiples of δmin,
i.e., δmax

δmin
discrete values. This choice is mainly driven by

the computational complexity of finding oracle query plans
via breadth-first beam search. The branching factor at each
search step is b × T × δmax

δmin
, where b is the beam width.

Smaller values of δmin may lead to higher quality query
plans, but only at the expense of increased computational
complexity.
Features. To drive the learning process, we define feature
functions ψ1 and ψ2 over search states. Our features can be
categorized into three groups: 1) Static features that are com-
puted from the query topology, decomposed star queries,
and initial partial matches. Some examples include the num-
ber of nodes and edges in each star query, the number of
candidate nodes in data graph, and the number of joinable
nodes in a star decomposition; 2) Ranking features that are
computed from the lower bound of current top-k answers
and upper bound for each star query; and 3) Context features
that are computed based on the current state of L2P-STAR
like the selected star query and the total number of fetches
for each star query. The features are cheap to compute. See
Appendix for complete details of features.

Experiments and Results
Using three large real-world knowledge graphs, we empir-
ically evaluate the performance of our instantiation of L2P
framework for STAR query processing approach.

Experimental Setup
Datasets. We employ three real-world open knowledge
graphs: 1) YAGO (mpi-inf.mpg.de/yago) contains

Yago DBPedia Freebase
590s 680s 1120s

Table 1: Average runtime (in seconds) of Algorithm 3 with
beam width b=10.
2.6M entities (e.g., people, companies, cities), 5.6M re-
lationships, and 10.7M nodes and edge labels, extracted
from several public knowledge bases including Wikipedia;
2) DBpedia (dbpedia.org) consists of 3.9M enti-
ties, 16.8M edges, and 14.9M labels; and 3) Freebase
(freebase.com), a more diversified knowledge graph
that contains 40.3M entities, 180M edges, and 81.6M la-
bels.
Query Workload. We developed a query generator to pro-
duce both training and testing queries following the DBPSB
benchmark (Morsey et al. 2011). We first generate a set of
query templates, each has a topology sampled from a graph
category (de Ridder et al), and is assigned with labels (spec-
ified as “entity types”) sampled from top 20% most fre-
quent labels in the real-world graphs. We created 20 tem-
plates to cover common entity types, and generated a total of
2K queries by instantiating the templates. We employ 50%
queries for training, 20% for validation, and 30% for testing
respectively.
STAR Implementation. We implemented the STAR query
processing framework (Yang et al. 2016) in Java using the
Neo4j (neo4j.com) graph database system.
Oracle Policy Implementation. We performed heuristic
guided breadth-first beam search with different beam widths
b = {1, 5, 10, 20, 50} to compute high-quality target query
plans for each training query (see Algorithm 3). BayesOpt
software (Martinez-Cantin 2014) was employed to find the
weights of heuristics with expected improvement as the ac-
quisition function. We did not see noticeable performance
improvement beyond 100 iterations. Since we didn’t get sig-
nificant speedup improvements beyond b = 10, we em-
ployed target query plans (aka Oracle policy) obtained with
b = 10 for all our training and testing experiments.
L2P-STAR Implementation. We employed XG-
Boost (Chen and Guestrin 2016), an efficient and scalable
implementation of functional gradient tree boosting for
classification and regression, as our base learner. All hyper-
parameters (boosting iterations, tree depth, and learning
rate) were automatically tuned based on the validation data
using BayesOpt (Martinez-Cantin 2014), a state-of-the-art
BO software. L2P-STAR (Exact) and L2P-STAR (DAgger)
corresponds to policy learning via exact imitation and
DAgger algorithms respectively. We performed 5 iterations
of DAgger and selected the policy with the highest accuracy
on the validation data. L2P-STAR needs to additionally
store the learned policy (classifier and regressor pair).
However, this overhead is negligible when compared to the
memory usage of Neo4j.
Code and Data. All the code and data related to this work is
publicly available on a GitHub repository. We will provide
the link when this research is published.
Evaluation Metrics. We evaluate STAR, Oracle, and L2P-
STAR using the following two metrics.
1) Speedup. For a given query Q, the response time of an al-
gorithm P , denoted as Time(P, Q), refers to the total CPU

YAGO DBpedia Freebase
speedup accuracy run-time (ms) speedup accuracy run-time (ms) speedup accuracy run-time (ms)

STAR 1.00 100% 1925.78 1.00 100% 6401.48 1.00 100% 13932.26
Oracle 4.53 100% 757.70 5.62 100% 1192.26 62.53 100% 1478.60
L2P-STAR (Exact) 3.66 93% 764.00 5.00 97% 1310.26 47.69 95% 1550.03
L2P-STAR (DAgger) 3.71 94% 804.61 5.00 97% 1310.26 47.69 95% 1550.03

Table 2: Speedup, accuracy, and query run-time results (averaged over testing queries) comparing STAR, Oracle, and L2P-
STAR.

DBpedia Freebase
Analytical Ops Computation Time (ms) Analytical Ops Computation Time (ms)

Fetch # Join Fetch Join ML-Overhead # Fetch # Join Fetch Join ML-Overhead
STAR 3,876 13,106 3,101.51 3,283.58 N/A 5,732 20,048 3,868.65 10,044.39 N/A
Oracle 28 43 1,208.89 6.32 N/A 35 65 1,487.12 7.64 N/A
L2P-STAR 80 134 1,238.89 49.69 23.01 72 122 1,512.76 19.64 17.70

Table 3: Statistics of different analytical operations (e.g., fetch and join calls) and the corresponding computation time (averaged
over testing queries).
time taken from receiving the query to finding the top-k an-
swer. The speedup factor τ(P, Q) is computed as the ratio
of Time(STAR, Q) to Time(P, Q).

2) Accuracy. We employ Levenshtein distance func-
tion (Navarro 2001) to compute node/edge label similarity,
and R-WAG’s ranking function(Roy, Eliassi-Rad, and Pa-
padimitriou 2015) to compute the matching score F (·). For
a given query Q, the accuracy of an algorithm P is defined
as the ratio of the matching score of correct answer A∗ to
the matching score of predicted answer Â.

We conducted all our experiments on a Windows server
with 3.5 GHz Ci7 CPU and 32GB RAM configuration. All
experiments are conducted 3 times and averaged results are
presented. We report the average metrics (speedup, accuracy,
and computation time) over all testing queries.

Results. We organize our results along different dimensions.
Oracle Policy Computation Time. Table 1 shows the aver-
age time to compute the oracle query plan via beam search
with beam width b=10 (see Algorithm 3). The runtime is
high and it increases for denser graphs (e.g., Freebase).
Hence, we cannot use this computationally expensive pro-
cedure in real-time and need L2P to quickly generate high-
quality query plans.
STAR vs. Oracle. To find out the overall room for improve-
ment via L2P framework, we compare STAR with the ora-
cle policy. Recall that the oracle policy for a given query Q,
corresponds to the target query plan obtained by heuristic-
guided breadth-first beam search, and relies on the knowl-
edge of correct answer A∗. Table 2 shows the speed, accu-
racy, and run-time; and Table 3 shows the statistics of differ-
ent analytical operations (e.g., fetch and join calls) and the
corresponding computation time.

We make the following observations: 1) There is signifi-
cant room for improving STAR via L2P framework as noted
by speedup of oracle policy for different datasets (4.53 for
YAGO, 5.62 for DBpedia, and 62.53 for Freebase); 2) The
speedup of oracle policy is higher for large and dense data
graphs, e.g.,Freebase. Indeed, for dense graphs, we expect
more candidate matches for each star-query, which can make
the STAR very slow and L2P-STAR would be more benefi-
cial. In fact, there is a growing evidence that the real-world

graphs become denser over time and follows a power-law
pattern (Leskovec, Kleinberg, and Faloutsos 2007); and 3)
The number of fetch/join calls can be reduced by two orders
of magnitude by following the plan from oracle policy. As
pointed out earlier, one of the major drawbacks of TA style
STAR is that it fetches many “useless” partial answers that
do not contribute to top-k answers. The performance of or-
acle policy shows that it is possible to significantly improve
STAR if the learner can successfully imitate the oracle plans.
L2P-STAR vs. Oracle. We compare L2P-STAR with the
oracle policy to understand how well the learner is able
to mimic the search behavior of oracle. We make the fol-
lowing observations from Table 2. The speed and accuracy
of L2P-STAR in general is very close to the oracle policy
across all the datasets. L2P-STAR loses at most 6% accu-
racy and significantly improves the speed when compared
to STAR. For example, L2P-STAR improves the speed of
STAR by 47 times with an accuracy loss of 5% for Freebase.
L2P-STAR has to learn when to stop the search (i.e., select
HALT action). If L2P-STAR stops the search early, it will
lose accuracy. Similarly, it will lose speed when stopping
of the search is delayed. From Table 3, we can see that the
overhead of L2P-STAR to make search decisions (i.e., com-
puting features and excuting the classifier/regressor) is very
small when compared to the query processing time (2% of
query run-time on an average).

We did not see performance improvement in L2P-STAR
by training with DAgger when compared to training with
exact-imitation (except for YAGO). This is due to our prin-
ciple of selecting among multiple imperfect policies: pick
the policy with highest accuracy. We were able to uncover
policies with higher speedup over exact imitation, but their
accuracy was relatively low.
Ablation Analysis. STAR, and L2P-STAR have their cor-
responding selection and fetching policies. To understand
how the learned selection and fetching policies Πselect and
Πfetch affect STAR individually, we plug them one at a
time. Table 4 shows the results of this analysis for all the
three datasets. If we employ Πfetch for adaptive fetching
inside STAR, we get a speedup of 1.86, 2.19, and 4.78 for
YAGO, DBpedia, and Freebase respectively, without losing
any accuracy. Therefore, when practitioner requires 100%

Expansion
YAGO DBpedia Freebase

STAR L2P-STAR STAR L2P-STAR STAR L2P-STAR

Selection STAR (1, 100%) (1.86, 100%) (1, 100%) (2.19, 100%) (1, 100%) (4.78, 100%)
L2P-STAR (4.08, 87%) (3.71, 94%) (5.81, 90%) (5.00, 97%) (54.14, 83%) (47.69, 95%)

Table 4: Results of ablation analysis.

accuracy, this combination can be deployed. This also shows
the usefulness of Πfetch alone. However, the overall perfor-
mance of STAR with Πfetch alone is much worse than L2P-
STAR and shows the importance of Πselect.

Test dataset
YAGO DBpedia Freebase

Tr
ai

n

YAGO (3.71, 0.93) (3.88, 0.96) (22, 0.92)
DBpedia (4.30, 0.90) (5, 0.97) (55.36, 0.89)
Freebase (4.24, 0.88) (5.72, 0.89) (47.69, 0.95)
Combined (3.87, 0.92) (4.27, 0.97) (55.84, 0.96)

Table 5: Transfer learning results. Table cells contain the
speedup and accuracy pair of L2P-STAR for different train
and test configurations.
Transfer Learning. The learned policy can be seen as a
function that maps search states to appropriate actions via
features. Since the feature definitions are general, one could
hypothesize that the learned knowledge is general and can
be used to query different data graphs. To test this hypoth-
esis, we learned policies on each of the three datasets, an-
other policy using the combination of all the three datasets;
and tested each policy on both individual datasets and the
combined dataset. We make the following observations from
Table 5. The learned policies generalize reasonably well to
datasets that are not used for their training. We get the best
accuracy when training and testing are done on the same
dataset. The only exception is that the policy trained on the
combined dataset gave better performance on Freebase.

Change % (Speedup, Accuracy)
0% (4.12, 95.9%)
5% (5.26, 93.2%)
10% (7.03, 93.1%)

Table 6: Performance of L2P-STAR with changes to the
trained data graph.
Changing Data Graph. To investigate the stability of the
learned policy with changes to the training data graph, we
performed some experiments on DBpedia graph. We do
not have access to the temporal data graph. Therefore, we
created multiple samples of original data graph with vary-
ing sizes by employing the well-studied Forest Fire (FF)
approach (Leskovec and Faloutsos 2006). We train on the
smallest data sample (90% of the original graph) and test
on larger samples. This setup is based on the fact that real-
world graphs are known to become large and dense over
time (Leskovec, Kleinberg, and Faloutsos 2007). From Ta-
ble 6, we can see that by changing 10% of the training data
graph (i.e., 1.6M additional edges), L2P-STAR loses at most
3% accuracy (similar to transfer learning results). Addition-
ally, the speedup of L2P-STAR improves as the data graph
evolves. As explained before, it is natural to expect more
speedup with large and dense graphs: increased candidate
matches for each sub-query can make STAR slower and

L2P-STAR can be more beneficial. Indeed, Table 2 corrob-
orates this hypothesis e.g., Freebase.

In general, we need to update the policy whenever the dis-
tribution of queries and/or data graph changes significantly.
A thorough investigation of this aspect is part of our imme-
diate future work.

Related Work
Our work is related to a sub-area of AI called speedup
learning (Fern 2010). Specifically, it is an instance of inter-
problem speedup learning. Reinforcement learning (RL),
imitation learning (IL), and hybrid approaches combining
RL and IL have been explored to learn search control
knowledge from training problems in the context of di-
verse application domains. Some examples include job shop
scheduling (Zhang and Dietterich 1995), deterministic and
stochastic planning (Xu, Fern, and Yoon 2009; Pinto and
Fern 2014), natural language processing (Jiang et al. 2012;
He, Daumé III, and Eisner 2012; 2013), computer vision
(Weiss, Sapp, and Taskar 2013; Weiss and Taskar 2013),
and mixed-integer programming solvers (He, Daumé III,
and Eisner 2014; Khalil et al. 2016). Our work explores
this speedup learning problem for query planning in graph
databases, a novel application domain. We formalized and
solved this problem in a learning to plan framework. There is
some work on applying learning in the context of query op-
timization (Hasan and Gandon 2014; Ganapathi et al. 2009;
Gupta, Mehta, and Dayal 2008), but we are not aware of any
existing work that tightly integrates learning and search for
graph query planning as done in this work.

Knoblock and Kambhampati has done seminal work on
applying automating planning techniques for information in-
tegration on the web (Knoblock and Kambhampati 2007).
Their work leverages the relationship between query plan-
ning in information integration and automated planning with
sensing (i.e., information gathering) actions. Our work is
different from theirs as we explore query planning in the
context of traditional (graph) databases and rely heavily on
advanced learning techniques.

Summary and Future Work
We developed a general learning to plan (L2P) framework
to improve the computational efficiency of a large-class of
query reasoners that follow the Threshold Algorithm frame-
work. We integrated learning and search to generate adap-
tive query plans in a data-driven manner via training queries.
We showed that our concrete instantiation L2P-STAR can
achieve significant speedup over STAR with negligible loss
in accuracy across multiple knowledge graphs. Future work
includes exploring ways to further improve the accuracy of
L2P-STAR without losing speedup; scaling up L2P frame-
work to handle large number of batch/streaming queries by
exploring active learning techniques; and deploying L2P in-
stantiations for both relational and graph databases in real-
world applications.

References
Arai, B.; Das, G.; Gunopulos, D.; and Koudas, N. 2007. Anytime
measures for top-k algorithms. In VLDB.
Chen, T., and Guestrin, C. 2016. Xgboost: A scalable tree boosting
system. In KDD.
Cheng, J.; Zeng, X.; and Yu, J. X. 2013. Top-k graph pattern
matching over large graphs. In ICDE.
Chin Jr, G.; Choudhury, S.; Feo, J.; and Holder, L. 2014. Predicting
and detecting emerging cyberattack patterns using streamworks. In
Proceedings of the 9th Annual Cyber and Information Security Re-
search Conference, 93–96.
Corporation, N. 2013. Information system
on graph classes and their inclusions (isgci).
http://docs.neo4j.org/chunked/stable/cypher-query-lang.html.
Das, M.; Wu, Y.; Khot, T.; Kersting, K.; and Natarajan, S.
2016. Scaling lifted probabilistic inference and learning via graph
databases. In SDM.
de Ridder et al, H. Information system on graph classes and their
inclusions (isgci). graphclasses.org.
Ding, X.; Jia, J.; Li, J.; Liu, J.; and Jin, H. 2014. Top-k similarity
matching in large graphs with attributes. In DASFAA.
Fagin, R.; Lotem, A.; and Naor, M. 2003. Optimal aggregation
algorithms for middleware. Journal of Computer and System Sci-
ences 66(4):614–656.
Fern, A.; Yoon, S. W.; and Givan, R. 2006. Approximate policy
iteration with a policy language bias: Solving relational markov
decision processes. JAIR 25:75–118.
Fern, A. 2010. Speedup learning. In Encyclopedia of Machine
Learning.
Fern, A. 2016. Personal Communication.
Ganapathi, A.; Kuno, H.; Dayal, U.; Wiener, J. L.; Fox, A.; Jordan,
M.; and Patterson, D. 2009. Predicting multiple metrics for queries:
Better decisions enabled by machine learning. In ICDE.
Gupta, C.; Mehta, A.; and Dayal, U. 2008. Pqr: Predicting query
execution times for autonomous workload management. In ICAC.
Hasan, R., and Gandon, F. 2014. A machine learning approach to
sparql query performance prediction. In IEEE/WIC/ACM.
He, H.; Daumé III, H.; and Eisner, J. 2012. Imitation learning by
coaching. In NIPS.
He, H.; Daumé III, H.; and Eisner, J. 2013. Dynamic feature selec-
tion for dependency parsing. In EMNLP.
He, H.; Daumé III, H.; and Eisner, J. 2014. Learning to search in
branch and bound algorithms. In NIPS.
Jiang, J.; Teichert, A. R.; Daumé III, H.; and Eisner, J. 2012.
Learned prioritization for trading off accuracy and speed. In NIPS.
Khalil, E. B.; Bodic, P. L.; Song, L.; Nemhauser, G. L.; and Dilkina,
B. N. 2016. Learning to branch in mixed integer programming. In
AAAI.
Khardon, R. 1999. Learning to take actions. Machine Learning
35(1):57–90.
Kim, J.; Shin, H.; Han, W.-S.; Hong, S.; and Chafi, H. 2015. Tam-
ing subgraph isomorphism for rdf query processing. VLDB 1238–
1249.
Knoblock, C., and Kambhampati, S. 2007. Tutorial on information
integration on the web. In AAAI.
Leskovec, J., and Faloutsos, C. 2006. Sampling from large graphs.
In SIGKDD.

Leskovec, J.; Kleinberg, J.; and Faloutsos, C. 2007. Graph evolu-
tion: Densification and shrinking diameters. TKDD 2.
Lu, J.; Lin, C.; Wang, W.; Li, C.; and Wang, H. 2013. String
similarity measures and joins with synonyms. In SIGMOD.
Martinez-Cantin, R. 2014. Bayesopt: A bayesian optimization li-
brary for nonlinear optimization, experimental design and bandits.
Journal of Machine Learning Research 15:3915–3919.
Morsey, M.; Lehmann, J.; Auer, S.; and Ngonga Ngomo, A.-C.
2011. DBpedia SPARQL Benchmark – Performance Assessment
with Real Queries on Real Data. In ISWC.
Navarro, G. 2001. A guided tour to approximate string matching.
CSUR 33(1):31–88.
Niu, F.; Ré, C.; Doan, A.; and Shavlik, J. W. 2011. Tuffy: Scaling
up statistical inference in markov logic networks using an RDBMS.
PVLDB 4(6):373–384.
O’Brien, T.; Ritz, A.; Raphael, B.; and Laidlaw, D. 2010. Grem-
lin: an interactive visualization model for analyzing genomic rear-
rangements. TVCG 918–926.
Pinto, J., and Fern, A. 2014. Learning partial policies to speedup
MDP tree search. In UAI.
Prud’Hommeaux, E.; Seaborne, A.; et al. 2008. Sparql query lan-
guage for rdf. W3C recommendation 15.
Ross, S.; Gordon, G. J.; and Bagnell, D. 2011. A reduction of imita-
tion learning and structured prediction to no-regret online learning.
In AISTATS.
Roy, S. B.; Eliassi-Rad, T.; and Papadimitriou, S. 2015. Fast best-
effort search on graphs with multiple attributes. TKDE 27(3):755–
768.
Sarkhel, S.; Venugopal, D.; Pham, T. A.; Singla, P.; and Gogate, V.
2016. Scalable training of markov logic networks using approxi-
mate counting. In AAAI.
Shahriari, B.; Swersky, K.; Wang, Z.; Adams, R. P.; and de Freitas,
N. 2016. Taking the human out of the loop: A review of bayesian
optimization. Proceedings of the IEEE 104(1):148–175.
Weiss, D. J., and Taskar, B. 2013. Learning adaptive value of
information for structured prediction. In NIPS.
Weiss, D. J.; Sapp, B.; and Taskar, B. 2013. Dynamic structured
model selection. In ICCV.
Xu, Y.; Fern, A.; and Yoon, S. W. 2009. Learning linear rank-
ing functions for beam search with application to planning. JMLR
10:1571–1610.
Yang, S.; Han, F.; Wu, Y.; and Yan, X. 2016. Fast top-k search in
knowledge graphs.
Zeng, X.; Cheng, J.; Yu, J.; and Feng, S. 2012. Top-k graph pattern
matching: A twig query approach. WAIM.
Zhang, W., and Dietterich, T. G. 1995. A reinforcement learning
approach to job-shop scheduling. In IJCAI.
Zhang, C.; Kumar, A.; and Ré, C. 2016. Materialization optimiza-
tions for feature selection workloads. ACM TODS 41(1):2.
Zou, L.; Huang, R.; Wang, H.; Yu, J. X.; He, W.; and Zhao, D.
2014. Natural language question answering over RDF: a graph
data driven approach. In SIGMOD.

