Graph Homomorphism Revisited for Graph Matching

Wenfei Fan ${ }^{1,2}$ Jianzhong Li ${ }^{2}$ Shuai Ma ${ }^{1}$ Hongzhi Wang ${ }^{2}$ Yinghui Wu ${ }^{1}$ ${ }^{1}$ University of Edinburgh ${ }^{2}$ Harbin Institute of Technology
\{wenfei@inf.,shuai.ma@,y.wu-18@sms.\}ed.ac.uk \{lijzh, wangzh\}@hit.edu.cn

Abstract

In a variety of emerging applications one needs to decide whether a graph G matches another G_{p}, i.e., whether G has a topological structure similar to that of G_{p}. The traditional notions of graph homomorphism and isomorphism often fall short of capturing the structural similarity in these applications. This paper studies revisions of these notions, providing a full treatment from complexity to algorithms. (1) We propose p-homomorphism (p-hom) and 1-1 p-hom, which extend graph homomorphism and subgraph isomorphism, respectively, by mapping edges from one graph to paths in another, and by measuring the similarity of nodes. (2) We introduce metrics to measure graph similarity, and several optimization problems for p-hom and $1-1 p$-hom. (3) We show that the decision problems for p-hom and 1-1 p-hom are NP-complete even for DAGs, and that the optimization problems are approximation-hard. (4) Nevertheless, we provide approximation algorithms with provable guarantees on match quality. We experimentally verify the effectiveness of the revised notions and the efficiency of our algorithms in Web site matching, using real-life and synthetic data.

1. Introduction

The notions of graph homomorphism and subgraph isomorphism [9] can be found in almost every graph theory textbook. Given two node-labeled graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$, the problem of graph homomorphism (resp. subgraph isomorphism) is to find a (resp. 1-1) mapping from V_{1} to V_{2} such that each node in V_{1} is mapped to a (resp. distinct) node in V_{2} with the same label, and each edge in E_{1} is mapped to an edge in E_{2}.
These conventional notions are, however, often too restrictive for graph matching in emerging applications. In a nutshell, graph matching is to decide whether a graph G matches another graph G_{p}, i.e., whether G has a structure similar to that of G_{p}, although not necessarily identical. The need for this is evident in, e.g., Web anomaly detection [23], search result classification [25], plagiarism detection [20] and spam detection [3]. In these contexts, identical label matching is often an overkill, and edge-to-edge mappings only allow strikingly similar graphs to be matched.

Example 1.1: Consider two online stores depicted in Fig. 1 as graphs $G_{p}=\left(V_{p}, E_{p}\right)$ and $G=(V, E)$. In these graphs, each node denotes a Web page for sale of certain items, as indicated by its label; and the edges denote hyperlinks. One wants to know whether G matches G_{p}, i.e., whether all the items specified by G_{p}

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Articles from this volume were presented at The 36th International Conference on Very Large Data Bases, September 13-17, 2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 1
Copyright 2010 VLDB Endowment 2150-8097/10/09... \$ 10.00.

Figure 1: Graphs representing online stores
are also carried by the store G, and G and G_{p} can be navigated similarly, i.e., if a site for selling item a can be reached from a site for item b in G_{p} by following hyperlinks, then the site for item a can also be reached from the site for b in G.
When graph homomorphism or subgraph isomorphism is used to measure graph similarity, G does not match G_{p}. Indeed, (a) nodes in G may not find a node in G with the same label, e.g., audio; and worse still, (b) there exists no sensible mapping from V_{p} to V that maps edges in G_{p} to edges in G accordingly.
However, a page checker (e.g., $[8,29]$) may find connections between pages in G_{p} and those in G based on their functionality:
$\mathrm{A} \mapsto \mathrm{B}$, books \mapsto books, audio \mapsto digital, textbooks \mapsto school, abooks \mapsto audiobooks, albums \mapsto albums
That is, the store G indeed has the capability of G_{p}. While the edges in G_{p} are not preserved by the similarity relation, each edge in G_{p} is mapped to a path in $G, e . g$., the edge (books, textbooks) in G_{p} is mapped to the path books/categories/school in G. This tells us that G preserves the navigational structure of G_{p}. Hence G should logically be considered as a match of G_{p}.

These highlight the need for revising the conventional notions of graph matching. In response to these, several extensions of the conventional notions have been studied for graph matching [10,11 , $14,24,32$]. However, a formal analysis of these extensions is not yet in place, from complexity bounds to approximation algorithms.

Contributions. We propose several notions to capture graph structural similarity that encompass the previous extensions, and provide a full treatment of these notions for graph matching.
(1) We introduce p-homomorphism (p-hom) and 1 -1 p-hom in Section 3. These notions extend graph homomorphism and subgraph isomorphism, respectively, by (a) incorporates similarity metrics to measure the similarity of nodes, as opposed to node label equality; and (b) mapping edges in a graph to paths in another, rather than edge-to-edge mappings. In contrast to previous extensions, one can use node similarity to assure, e.g., that two Web pages are matched only when they have similar contents [29] or play a similar role (as a hub or authority [6]). Edge-to-path mappings allow us to match graphs that have similar navigational structures but cannot be identified by the conventional notions of graph matching. In addition, these notions can be readily extended to deciding whether two graphs are similar to each other in a symmetric fashion.
(2) To provide a quantitative measure of graph similarity, we develop two metrics, also in Section 3, based on (a) the maximum
number of nodes matched, and (b) the maximum overall similarity when the weights of nodes are taken into account, respectively. These metrics give rise to two natural optimization problems, referred to as the maximum cardinality problem and the maximum similarity problem, respectively, for each of p-hom and 1-1 p-hom. In particular, the maximum common subgraph problem [19] is a special case of the maximum cardinality problem for $1-1 p$-hom.
(3) We establish complexity bounds of the decision problems and optimization problems for p-hom and 1-1 p-hom, in Section 4. We show that the problems for determining p-hom and 1-1 p-hom, as well as the maximum cardinality problem and the maximum similarity problem, are all NP-complete, even for directed acyclic graphs (DAGs). Worse still, the optimization problems are hard to approximate: unless $\mathrm{P}=\mathrm{NP}$, it is beyond reach in practice to approximate the problems within $O\left(1 / n^{1-\epsilon}\right)$ of the optimal solutions for any constant ϵ. All proofs are given in the appendix.
(4) Nevertheless, we provide in Section 5 approximation algorithms for finding mappings with the maximum cardinality or the maximum similarity, for p-hom and 1-1 p-hom. These algorithms possess performance guarantees on match quality: for any graphs G_{1} and G_{2}, the solutions found by the algorithms are provable to be within a polynomial $O\left(\log ^{2}\left(n_{1} n_{2}\right) /\left(n_{1} n_{2}\right)\right)$ of the optimal solutions, where n_{1} (resp. n_{2}) is the number of nodes in G_{1} (resp. G_{2}).
(5) Using Web site matching as a testbed, we experimentally evaluate our similarity measures in Section 6. We compare p-hom and 1$1 p$-hom with three other methods: graph simulation [17], subgraph isomorphism [9] and vertex similarity matrix [21]. Using real-life Web sites and synthetic graphs, we show that our methods outperform those three methods in both match quality and efficiency.

We expect that p-hom and 1-1 p-hom will find applications in Web site classification [5, 12], complex object identification, plagiarism [20] and spam detection [3], among other things.

2. Related Work

There have been extensions of graph matching by allowing edges to map to paths, for trees [24], DAGs [10] or graphs [11, 14, 32]. An approximate retrieval method is proposed for matching trees [24], which identifies and merges regions of XML data that are similar to a given pattern, by using an inverted index. Stack-based algorithms are studied for matching DAGs [10], by leveraging filtering for early pruning. Exponential-time algorithms for matching general graphs are developed in [11], based on join operations over graphs encoded as tables. A notion of XML schema embedding is studied in [14], which is a special case of p-hom with two extra conditions. A form of graph pattern matching is considered in [32], in which edges denote paths with a fixed length. Algorithms for approximate graph matching can also be found in [27, 30]. Most prior work does not consider node similarity in pattern matching, such as all the work mentioned above except [24]. Further, except [14], the complexity of graph matching is not settled; indeed, some algorithms were claimed to be in polynomial time, whereas we show that the problem is NP-hard even for DAGs (Section 4). The complexity bounds of [14] are developed for a different problem, and do not carry over to (1-1) p-hom. In addition, none of the previous algorithms has provable guarantees on match quality, as opposed to the approximation algorithms of this paper.

A variety of methods have been studied for measuring graph similarity, typically following one of three approaches. (a) Featurebased: it counts the number of common features in graphs, namely, domain-specific elementary structures, e.g., root-leaf paths [18]. (b) Structure-based: it assesses the similarity of the topology of
graphs based on simulation [17, 12], subgraph isomorphism (common maximum subgraph) [27, 30], or edit distance [31] (see [9, 26] for surveys). Graph simulation considers edge-preserving relations instead of functions from one graph to another. Graph edit distance is essentially based on subgraph isomorphism. (c) Vertex similarity: it builds a matrix of node similarity based on fixpoint computation $[6,21]$ and the roles of nodes in the structures of the graphs (e.g., hubs or authorities [6]). As pointed out by [25, 30], the feature-based approach does not observe global structural connectivity, and is often less accurate than the structure-based measure. As observed by [4, 23], vertex similarity alone does not suffice to identify accurate matches since it ignores the topology of graphs by and large. For Web site matching in particular, it is essential to consider how pages are linked to each other. One cannot match two sites with different navigational structures even if most of their pages can be matched pairwise. Further, vertex similarity requires fixpoint operations and is often too expensive to compute on large graphs. As opposed to previous approaches, we introduce (1-1) p-hom to capture both structural similarity by enforcing edge-topath mappings, and the contents of individual nodes by incorporating node similarity. In addition, we provide maximum cardinality and maximum overall similarity metrics to quantitatively measure graph similarity, which have not been studied by previous work.

A number of graph matching algorithms have been developed (see [9] for a survey). Our algorithms extend the algorithms of [7, 16] for computing maximum (weighted) independent sets.

3. Revisions of Graph Homomorphism

In this section we first introduce p-homomorphism and 1-1 p homomorphism. We then present metrics to quantitatively measure graph similarity, and formulate related optimization problems.

3.1 Graphs and Node Similarity

A node-labeled, directed graph is defined as $G=(V, E, L)$, where (1) V is a set of nodes; (2) $E \subseteq V \times V$ is a set of edges, in which $\left(v, v^{\prime}\right)$ denotes an edge from node v to v^{\prime}; and (3) for each v in $V, L(v)$ is the label of v. The label $L(v)$ may indicate $e . g$., the content or URL of a Web page $[4,5]$.

Consider graphs $G_{1}=\left(V_{1}, E_{1}, L_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}, L_{2}\right)$.
We assume a similarity matrix mat(). For each pair (v, u) of nodes in $V_{1} \times V_{2}$, $\operatorname{mat}(v, u)$ is a number in $[0,1]$, indicating how close the labels of v and u are.

The matrix mat() can be generated in a variety of ways. In Web site matching, for instance, mat (v, u) for each pair (u, v) of pages may be computed in terms of common shingles that u and v share. Here a shingle [8] is a meaningful region contained in a Web page, and mat (v, u) indicates the textual similarity of u and v. One may also treat vertex similarity matrix $[6,21]$ as mat () , which measures the hub-authority structural similarity of two nodes [6] and incorporates certain topological structural properties of the graphs.

It may be too expensive to compute vertex similarity matrix on large graphs or to match those graphs. To cope with this we may use "skeletons" of the graphs instead, namely, subgraphs induced from "important" nodes such as hubs, authorities and nodes with a large degree. Indeed, approximate matching is commonly accepted in practice $[6,24,27,30]$. We compute mat() for such nodes only.

We use a similarity threshold ξ to indicate the suitability of mapping v to u, such that v can be mapped to u only if $\operatorname{mat}(v, u) \geq \xi$.

3.2 P-Homomorphism and 1-1 P-Homomorphism

P-homomorphism. Graph G_{1} is said to be p-homomorphism (p hom) to G_{2} w.r.t. a similarity matrix mat() and a similarity threshold ξ, denoted by $G_{1} \precsim(e, p) G_{2}$, if there exists a mapping σ from

G_{1}

G_{4}

G6
Figure 2: p-hom and 1-1 p-hom
V_{1} to V_{2} such that for each node $v \in V_{1}$,
(1) if $\sigma(v)=u$, then $\operatorname{mat}(v, u) \geq \xi$; and
(2) for each edge $\left(v, v^{\prime}\right)$ in E_{1}, there exists a nonempty path $u / \ldots / u^{\prime}$ in G_{2} such that $\sigma\left(v^{\prime}\right)=u^{\prime}$, i.e., each edge from v is mapped to a path emanating from u.
We refer to σ as a p-hom mapping from G_{1} to G_{2}.
Example 3.1: Recall G_{p} and G of Fig. 1. As shown in Example $1.1, G_{p}$ is neither homomorphic nor isomorphic to a subgraph of G. In contrast, suppose that a page checker [8,29] yields mat ${ }_{\mathrm{e}}()$:

$$
\begin{aligned}
& \operatorname{mat}_{\mathrm{e}}(A, B)=\text { mat }_{\mathrm{e}}(\text { audio, digital })=0.7 \\
& \operatorname{mat}_{\mathrm{e}}(\text { books, books })=1.0 \\
& \operatorname{mat}_{\mathrm{e}}(\text { abooks, audiobooks })=0.8 \\
& \operatorname{mat}_{\mathrm{e}}(\text { books, booksets })=\text { mat }_{\mathrm{e}}(\text { textbooks, school })=0.6 \\
& \operatorname{mat}_{\mathrm{e}}(\operatorname{albums}, \text { albums })=0.85 \\
& \operatorname{mat}_{\mathrm{e}}(\mathrm{v}, \mathrm{u})=0, \text { for all other node pairs }
\end{aligned}
$$

Then $G_{p} \precsim_{(e, p)} G$ w.r.t. mat ${ }_{\mathrm{e}}()$ and any threshold $\xi \leq 0.6$. Indeed, the mapping given in Example 1.1 is a p-hom mapping.

To further illustrate p-hom, let us consider the graphs of Fig. 2. In each pair of the graphs, assume that $\operatorname{mat}(v, u)=1$ if u and v have the same label, and $\operatorname{mat}(v, u)=0$ otherwise, for nodes v in one graph and u in another. Fix $\xi=0.5$. One can see the following. (1) $G_{1} \precsim_{(e, p)} G_{2}$. A p-hom mapping is defined by mapping both A nodes in G_{1} to the A node in G_{2}, the node B in G_{1} to the B node in G_{2}, and the node C in G_{1} to any of the two C nodes in G_{2}.
(2) $G_{3} \mathscr{L}_{(e, p)} G_{4}$. Mapping the D node in G_{3} to only one of the D nodes in G_{4} does not make a p-hom mapping, because either the edge (A, D) or (B, D) in G_{3} cannot be mapped to a path in G_{4}.
(3) $G_{5} \precsim_{(e, p)} G_{6}$, for the same reason as (1).

1-1 p-homomorphism. A graph G_{1} is $1-1 p$-hom to G_{2}, denoted by $G_{1} \precsim_{(e, p)}^{1-1} G_{2}$, if there exists a 1-1 (injective) p-hom mapping σ from G_{1} to G_{2}, i.e., for any distinct nodes v_{1}, v_{2} in $G_{1}, \sigma\left(v_{1}\right) \neq$ $\sigma\left(v_{2}\right)$. We refer to σ as a 1-1 p-hom mapping from G_{1} to G_{2}.
Example 3.2: For G_{p} and G of Fig. 1, the p-hom mapping given in Example 3.1 is also a 1-1 p-hom mapping, i.e., $G_{p} \precsim_{(e, p)}^{1-1} G$.

As another example, consider G_{1} and G_{2} of Fig. 2. While $G_{1} \precsim_{(e, p)} G_{2}, G_{1} \nsim L_{(e, p)}^{1-1} G_{2}$. In particular, the p-hom mapping given in Example 3.1 is not injective, since it maps both A nodes in G_{1} to the same A node in G_{2}. Similarly, while $G_{5} \precsim(e, p) G_{6}$, $G_{5} \not \mathscr{L}_{(e, p)}^{1-1} G_{6}$ as a p-hom mapping has to map both B nodes in G_{5} to the B node in G_{6}, which is not allowed by a 1-1 mapping.

Note that subgraph isomorphism is a special case of 1-1 p-hom: G_{1} is isomorphic to a subgraph of G_{2} iff there exists a 1-1 p-hom mapping σ from G_{1} to G_{2} that (a) maps each edge $\left(v, v^{\prime}\right)$ in G_{1} to an edge $\left(\sigma(v), \sigma\left(v^{\prime}\right)\right)$ in G_{2}, (b) adopts node label equality, and moreover, (c) if $\left(\sigma(v), \sigma\left(v^{\prime}\right)\right)$ is an edge in G_{2}, then $\left(v, v^{\prime}\right)$ must be an edge in G_{1}; in contrast, 1-1 p-hom only requires edges from G_{1} to find a match in G_{2}, but not the other way around. Similarly, graph homomorphism is a special case of p-hom.
Remark. For $G_{1} \precsim_{(e, p)} G_{2}\left(G_{1} \precsim_{(e, p)}^{1-1} G_{2}\right)$ we require an edge-to-path mapping from G_{1} to G_{2} when G_{1} is a pattern for a data graph G_{2} to match. Nevertheless, (1-1) p-hom can be readily made symmetric that maps paths between G_{1} and G_{2}. Indeed, one only need to compute G_{1}^{+}, the transitive closure of G_{1} (in $O\left(\left|G_{1}\right|^{2}\right)$ -

CPH	maximum cardinality for p-hom
CPH^{1-1}	maximum cardinality for $1-1 p$-hom
SPH	maximum overall similarity for p-hom
SPH^{1-1}	maximum overall similarity for $1-1 p$-hom

Table 1: Notations: Optimization problems
time [22]), and check whether $G_{1}^{+} \precsim(e, p) G_{2}\left(G_{1}^{+} \precsim_{(e, p)}^{1-1} G_{2}\right)$.

3.3 Metrics for Measuring Graph Similarity

In practice one often wants to measure the similarity of graphs G_{1} and G_{2} although G_{1} may not be (1-1) p-hom to G_{2}. We next provide two metrics that give a quantitative measure of the similarity of two graphs in the range of $[0,1]$. Let σ be a p-hom mapping from a subgraph $G_{1}^{\prime}=\left(V_{1}^{\prime}, E_{1}^{\prime}, L_{1}^{\prime}\right)$ of G_{1} to G_{2}.

Maximum cardinality. This metric evaluates the number of nodes in G_{1} that σ maps to G_{2}. The cardinality of σ is defined as:

$$
\text { qualCard }(\sigma)=\frac{\left|V_{1}^{\prime}\right|}{\left|V_{1}\right|} .
$$

The maximum cardinality problem for p-hom (resp. 1-1 p-hom), denoted by CPH (resp. CPH^{1-1}), is to find, given G_{1}, G_{2}, mat () and ξ as input, a (resp. 1-1) p-hom mapping σ from a subgraph of G_{1} to G_{2} such that qualCard (σ) is maximum.

Observe the following. (1) If $G_{1} \precsim(e, p) \quad G_{2}$ or $G_{1} \precsim_{(e, p)}^{1-1} G_{2}$, then a p-hom mapping σ with maximum qualCard (σ) is a p-hom mapping from the entire G_{1} to G_{2}. (2) The familiar maximum common subgraph problem (MCS) is a special case of CPH^{1-1} (recall that MCS is to find a subgraph G_{1}^{\prime} of G_{1} and a subgraph G_{2}^{\prime} of G_{2} such that (a) G_{1}^{\prime} and G_{2}^{\prime} are isomorphic, and (b) the cardinality of G_{1}^{\prime} (equivalently, G_{2}^{\prime}) is maximum; see, e.g., [19]).

Overall similarity. Alternatively, we consider the overall similarity of mapping σ. Assume a weight $w(v)$ associated with each node v, indicating relative importance of $v, e . g$., whether v is a hub, authority, or a node with a high degree. The metric is defined to be

$$
\text { qualSim }(\sigma)=\frac{\Sigma_{v \in V_{1}^{\prime}}(w(v) * \operatorname{mat}(v, \sigma(v)))}{\Sigma_{v \in V_{1}} w(v)}
$$

Intuitively, the higher the weight $w(v)$ is and the closer v is to its match $\sigma(v)$, the better the choice of v is. This metric favors "important" nodes in G_{1} that can find highly similar nodes in G_{2}.
The maximum overall similarity problem for p-hom (resp. 1$1 p$-hom), denoted by SPH (resp. SPH ${ }^{1-1}$) is to compute, given G_{1}, G_{2}, mat() and ξ as input, a (resp. 1-1) p-hom mapping σ from a subgraph of G_{1} to G_{2} such that qual $\operatorname{Sim}(\sigma)$ is maximum.
These optimization problems are summarized in Table 1.
Example 3.3: Consider graphs G_{5} and G_{6} shown in Fig. 2. There are two nodes labeled B in G_{1}, indicated by v_{1} and v_{2}, respectively. A similarity matrix $\operatorname{mat}_{0}()$ is given as follows:

$$
\begin{aligned}
& \operatorname{mat}_{0}(A, A)=\operatorname{mat}_{0}(D, D)=\operatorname{mat}_{0}(E, E)=\operatorname{mat}_{0}\left(v_{2}, B\right)=1 \\
& \operatorname{mat}_{0}\left(v_{1}, B\right)=0.6
\end{aligned}
$$

Let $\xi=0.6$, and assume $w(v)=1$ for each node v in G_{5}, except $w\left(v_{2}\right)=6$. Then G_{5} is not 1-1 p-hom to G_{6} : given mat ${ }_{0}()$ and ξ, any p-hom mapping from G_{5} to G_{6} has to map both v_{1} and v_{2} in G_{5} to the B node in G_{6}, which is not allowed by a 1-1 mapping. Nevertheless, we can still measure the similarity of G_{5} and G_{6}.
(1) When the maximum cardinality metric is adopted, an optimal 1-1 p-hom mapping σ_{c} is from a subgraph H_{1} of G_{5} to G_{6}, where H_{1} contains nodes A, D, E and v_{1}. Here σ_{c} maps each node v in G_{5} to a node u in G_{6} that has the same label as v. The mapping σ_{c} has maximum cardinality with qual $\operatorname{Card}\left(\sigma_{c}\right)=\frac{4}{5}=0.8$.
(2) When the maximum similarity metric is used, the optimal 1-1 p-hom mapping σ_{s} is from a subgraph H_{2} of G_{5} to G_{6}, where H_{2} consists of nodes A and v_{2} only. Here qualCard $\left(\sigma_{s}\right)=\frac{1 * 1+6 * 1}{1+1+1+1+6}$
$=0.7$. In contrast, qualCard $\left(\sigma_{c}\right)=\frac{1 * 1+1 * 0.6+1 * 1+1 * 1}{1+1+1+1+6}=0.36$, although σ_{c} maps more nodes from G_{5} to G_{6} than σ_{s}.

4. Intractability and Approximation Hardness

We next establish complexity bounds for the decision problems and optimization problems associated with p-homomorphism and 1-1 p-homomorphism (see Appendix A for detailed proofs).

Intractability. No matter how desirable, it is intractable to determine whether a graph is p-hom or 1-1 p-hom to another. We remark that while graph homomorphism is special case of p-hom, there is no immediate reduction from the former to the latter, and vice versa; similarly for subgraph isomorphism and 1-1 p-hom.

Theorem 4.1: Given graphs G_{1} and G_{2}, a similarity matrix mat() and a threshold ξ, it is NP-complete to decide whether (a) $G_{1} \precsim_{(e, p)} G_{2}$, or $(b) G_{1} \precsim_{(e, p)}^{1-1} G_{2}$. These problems are already NP-hard when both G_{1} and G_{2} are acyclic directed graphs (DAGs). It is NP-hard for 1-1 p-hom when G_{1} is a tree and G_{2} is a DAG.

In addition, it is unrealistic to expect a polynomial time (PTIME) algorithm for finding an optimal (1-1) p-hom mapping.

Corollary 4.2: The maximum cardinality problem and the maximum overall similarity problem are NP-complete for p-hom and 1-1 p-hom. These problems are already NP-hard for DAGs.

Approximation hardness. In light of Corollary 4.2, the best we can hope for are efficient heuristic algorithms for finding (1-1) p hom mappings, with performance guarantees on match quality. Unfortunately, $\mathrm{CPH}, \mathrm{CPH}{ }^{1-1}$, SPH and SPH ${ }^{1-1}$ are all hard to approximate. Indeed, there exist no PTIME algorithms for finding (1-1) p-hom mappings such that the quality of each mapping found is guaranteed to be within $O\left(1 / n^{1-\epsilon}\right)$ of its optimal counterpart.
Theorem 4.3: Unless $P=N P, \mathrm{CPH}, \mathrm{CPH}^{1-1}, \mathrm{SPH}$ and SPH^{1-1} are not approximable within $O\left(1 / n^{1-\epsilon}\right)$ for any constant ϵ, where n is the number of nodes in G_{1} of input graphs G_{1} and G_{2}.

The hardness is verified by a certain reduction from the maximum weighted independent set problem (WIS). In a graph, an independent set is a set of mutually non-adjacent nodes. Given a graph with a positive weight associated with each node, WIS is to find an independent set such that the sum of the weights of the nodes in the set is maximum. It is known that WIS is NP-complete, and is hard to approximate: it is not approximable within $O\left(1 / n^{1-\epsilon}\right)$ for any constant ϵ, where n is the number of nodes [16].
To show the approximation bound, we need to use approximation factor preserving reduction (AFP-reduction) [28]. Let Π_{1} and Π_{2} be two maximization problems. An AFP-reduction from Π_{1} to Π_{2} is a pair of PTIME functions (f, g) such that

- for any instance I_{1} of $\Pi_{1}, I_{2}=f\left(I_{1}\right)$ is an instance of Π_{2} such that opt ${ }_{2}\left(I_{2}\right) \geq$ opt $_{1}\left(I_{1}\right)$, where opt (resp. opt $\left._{2}\right)$ is the quality of an optimal solution to I_{1} (resp. I_{2}), and
- for any solution s_{2} to $I_{2}, s_{1}=g\left(s_{2}\right)$ is a solution to I_{1} such that $\operatorname{obj}_{1}\left(s_{1}\right) \geq \operatorname{obj}_{2}\left(s_{2}\right)$, where $\operatorname{obj}_{1}()\left(\right.$ resp. $\left.\operatorname{obj}_{2}()\right)$ is a function measuring the quality of a solution to I_{1} (resp. I_{2}).
AFP-reductions retain approximation bounds.
Proposition 4.4: ${ }^{[28]}$ If (f, g) is an AFP-reduction from problem Π_{1} to problem Π_{2}, and if there is a PTIME algorithm for Π_{2} with performance guarantee α, then there is a PTIME algorithm for Π_{1} with the same performance guarantee α.

Here an algorithm \mathcal{A} has performance guarantee α if for any instance $I, \operatorname{obj}(\mathcal{A}(I)) \geq \alpha \operatorname{opt}(I)$. Theorem 4.3 is verified by an AFP-reduction from WIS to each of $\mathrm{CPH}, \mathrm{CPH}^{1-1}, \mathrm{SPH}$ and

SPH ${ }^{1-1}$. That is, these problems are at least as hard as WIS when approximation is concerned.

5. Approximation Algorithms

Despite Theorem 4.3, we next provide approximation algorithms for each of the maximum cardinality problems $\left(\mathrm{CPH}, \mathrm{CPH}^{1-1}\right)$ and the maximum overall similarity problems ($\mathrm{SPH}, \mathrm{SPH}^{1-1}$). Optimization techniques are presented in Appendix B.
One of the main results of this section is an approximation bound for $\mathrm{CPH}, \mathrm{CPH}^{1-1}, \mathrm{SPH}$ and SPH^{1-1} : although the problems are not approximable within $O\left(1 / n^{1-\epsilon}\right)$ (Theorem 4.3), we establish a bound $O\left(\log ^{2}\left(n_{1} n_{2}\right) /\left(n_{1} n_{2}\right)\right)$. This is verified by AFPreductions (f, g) from these problems to WIS, by constructing product graphs of G_{1} and G_{2} (see Appendix A for a detailed proof).
Theorem 5.1: $\mathrm{CPH}, \mathrm{CPH}^{1-1}, \mathrm{SPH}$ and SPH^{1-1} are all approximable within $O\left(\log ^{2}\left(n_{1} n_{2}\right) /\left(n_{1} n_{2}\right)\right)$, where n_{1} and n_{2} are the numbers of nodes in input graphs G_{1} and G_{2}, respectively.

Theorem 5.1 suggests naive approximation algorithms for these problems. Given graphs $G_{1}\left(V_{1}, E_{1}, L_{1}\right), G_{2}\left(V_{2}, E_{2}, L_{2}\right)$, a similarity matrix mat() and a similarity threshold ξ, the algorithms (1) generate a product graph by using function f in the AFPreduction, (2) find a (weighted) independent set by utilizing the algorithms in [7,16], and (3) invoke function g in the AFP-reduction to get a (1-1) p-hom mapping from subgraphs of G_{1} to G_{2}.
More specifically, for CPH and CPH^{1-1}, we can leverage the approximation algorithm for maximum independent sets given in [7], which is in $O(n m)$ time, where n and m are the numbers of nodes and edges in a graph, respectively. For SPH and SPH ${ }^{1-1}$, we can use the algorithm of [16] for WIS, which is in $O(n m \log n)$-time. Thus the naive approximation algorithms for maximum cardinality and maximum overall similarity are in $O\left(\left|V_{1}\right|^{3}\left|V_{2}\right|^{3}\right)$-time and $O\left(\left|V_{1}\right|^{3}\left|V_{2}\right|^{3} \log \left(\left|V_{1}\right|\left|V_{2}\right|\right)\right)$-time, respectively.

Although these naive algorithms possess performance guarantees, they incur a rather high complexity in both time and space. The cost is introduced by the product graphs, which consist of $O\left(\left|V_{1}\right|\left|V_{2}\right|\right)$ nodes and $O\left(\left|V_{1}\right|^{2}\left|V_{2}\right|^{2}\right)$ edges.

We next develop more efficient algorithms that operate directly on the input graphs instead of on their product graph, retaining the same approximation bound. We first present an algorithm for CPH, and then extend the algorithm to $\mathrm{CPH}^{1-1}, \mathrm{SPH}$ and SPH^{1-1}.

Approximation algorithm for CPH. The algorithm is referred to as compMaxCard and is shown in Figures 3 and 4. Given G_{1}, G_{2}, mat() and ξ as input, it computes a p-hom mapping σ from a subgraph of G_{1} to G_{2}, aiming to maximize qualCard (σ).

The algorithm maintains the following data structures to ensure match quality. (a) A matching list H for nodes in G_{1}. For each node v in $H, H[v]$.good collects candidate nodes in G_{2} that may match v via the mapping σ; and $H[v]$.minus is the set of nodes in G_{2} that v cannot match via σ. (b) A set I of pairwise contradictory matching pairs (v, u), where v is a node in G_{1} and u is a node in G_{2}. For any two pairs $\left(v_{1}, u_{1}\right),\left(v_{2}, u_{2}\right)$ in I, if v_{1} is mapped to u_{1}, then v_{2} cannot be mapped to u_{2}, and vice versa. (c) An adjacency list H_{1} for G_{1}. For each node v in $G_{1}, H_{1}[v]$.prev and $H_{1}[v]$.post store its "parents" (i.e., the nodes from which there are edges to v) and "children" (i.e., the nodes to which there are edges from v), respectively. (d) An adjacency matrix H_{2} for the transitive closure graph G_{2}^{+}of G_{2} such that $H_{2}\left[u_{1}, u_{2}\right]=1$ iff $\left(u_{1}, u_{2}\right)$ is an edge in G_{2}^{+}, i.e., there is a nonempty path from u_{1} to u_{2} in G_{2}.

Here the transitive closure $G^{+}\left(V, E^{+}, L\right)$ of graph $G(V, E, L)$ is the graph such that for all nodes $v, v^{\prime} \in V,\left(v_{1}, v_{2}\right) \in E^{+}$iff there is a nonempty path from v_{1} to v_{2} in G.

```
Algorithm compMaxCard
Input: Two graphs \(G_{1}\left(V_{1}, E_{1}, L_{1}\right)\) and \(G_{2}\left(V_{2}, E_{2}, L_{2}\right)\), a similarity
    matrix mat(), and a similarity threshold \(\xi\)
Output: A \(p\)-hom mapping from subgraph of \(G_{1}\) to \(G_{2}\).
for each node \(v \in V_{1}\) of graph \(G_{1}\) do
    \(H_{1}[v]\). prev \(:=\left\{v^{\prime} \mid v^{\prime} \in V_{1},\left(v^{\prime}, v\right) \in E_{1}\right\} ;\)
    \(H_{1}[v]\).post \(:=\left\{v^{\prime} \mid v^{\prime} \in V_{1},\left(v, v^{\prime}\right) \in E_{1}\right\} ;\)
    \(H[v]\).good \(:=\left\{u \mid u \in V_{2}\right.\), mat \(\left.(v, u) \geq \xi\right\} ; H[v]\).minus := \(\emptyset ;\)
    compute the transitive closure \(G_{2}^{+}\left(V_{2}, E_{2}^{+}, L_{2}\right)\) of graph \(G_{2}\);
    for each ordered node pair \(\left(u_{1}, u_{2}\right)\) in \(G_{2}\) do
        if \(\left(u_{1}, u_{2}\right) \in E_{2}^{+}\)then \(H_{2}\left[u_{1}\right]\left[u_{2}\right]:=1\); else \(H_{2}\left[u_{1}\right]\left[u_{2}\right]:=0\);
    \(\sigma_{m}:=\emptyset ;\)
    while \(\operatorname{sizeof}(H)>\operatorname{sizeof}\left(\sigma_{m}\right)\) do
    \((\sigma, I):=\) greedyMatch \(\left(H_{1}, H_{2}, H\right) ; \quad H:=H \backslash I\);
    if sizeof \((\sigma)>\operatorname{sizeof}\left(\sigma_{m}\right)\) then \(\sigma_{m}:=\sigma\);
```

 return \(\sigma_{m}\).
 Figure 3: Approximation algorithm compMaxCard
The algorithm works as follows. It first constructs the adjacency list H_{1} and the matching list H for G_{1} (lines 1-4, Fig. 3), where for each v in $G_{1}, H[v]$.good collects nodes v^{\prime} in G_{2} such that $\operatorname{mat}\left(v, v^{\prime}\right) \geq \xi$, and $H[v]$.minus is initially empty. The transitive closure graph G_{2}^{+}of G_{2} is then computed and stored in adjacency matrix H_{2} (lines 5-7). The mapping σ_{m} is initially \emptyset (line 8), and is computed by a procedure greedyMatch as follows.

In a nutshell, greedyMatch (Fig. 4) picks a node v from H with maximal $H[v]$.good, and a candidate match u from $H[v]$.good. It then recursively computes a mapping σ_{1} provided that (v, u) is a match, and a mapping σ_{2} without (v, u). It returns the larger one of $\sigma_{1} \cup\{(v, u)\}$ and σ_{2} to decide whether (v, u) is a good choice. Meanwhile greedyMatch computes sets I_{1}, I_{2} of pairwise contradictory matching pairs and returns the larger one of them as I. It is worth remarking that I is nonempty.

Upon receiving σ and I from greedyMatch (line 10), algorithm compMaxCard removes conflict pairs I from H (line 10) and takes the larger one of σ and σ_{m}. (line 11). It repeatedly invokes greedyMatch until σ_{m} is no smaller than H (lines 9-11), i.e., when σ_{m} covers all the remaining nodes in H to be matched. The quality of the mapping returned (line 12) is guaranteed because (a) greedyMatch always picks the larger one of $\sigma_{1} \cup\{(v, u)\}$ and σ_{2}, and (b) bad choices of I are removed from H at an early stage.
We next give the details of the procedures of compMaxCard.
(a) Procedure greedyMatch (Fig. 4) takes the current matching list H as input. It computes a p-hom mapping σ from a subgraph of $G_{1}[H]$ to G_{2}, and a set I of conflict pairs. It selects a candidate match (v, u) as mentioned earlier, moves other nodes in $H[v]$.good to $H[v]$.minus and sets $H[v]$.good to empty set, since v has already picked a match u (lines 2-3). Assuming that (v, u) is a match, it updates H by pruning bad matches for the parent and the children of v in G_{1}, via another procedure trimMatching (line 4). The updated H is partitioned into two lists, H^{+}and H^{-}, such that for each node v^{\prime} in $H^{+}, H\left[v^{\prime}\right]$.good is nonempty, i.e., v^{\prime} may still find a match provided that (v, u) is a match; otherwise v^{\prime} is included in H^{-}(lines 5-9). Procedure greedyMatch then recursively computes p-hom mappings σ_{1} and σ_{2} for $G\left[H^{+}\right]$and $G\left[H^{-}\right]$, respectively (lines 10-11). It compares the sizes of $\sigma_{1} \cup\{(v, u)\}$ (i.e., the mapping with $(v, u))$ and σ_{2} (i.e., the mapping without (v, u)), and returns the larger one (lines 12-13). It also computes the set I. If (v, u) is not a good choice then it is included in I_{2} (line 12), the set of conflict pairs found when computing σ_{2}.
(b) Procedure trimMatching (Fig. 4) inputs a candidate match (v, u) and the current matching list H. It removes bad matches from H assuming that (v, u) is a match. That is, for any parent v^{\prime} in both $H_{1}[v]$.prev and H, it moves each candidate u^{\prime} from $H\left[v^{\prime}\right]$.good to $H\left[v^{\prime}\right]$.minus if there is no path from u^{\prime} to u in G_{2}

Procedure greedyMatch
Input: Graphs H_{1}, H_{2}, and matching list H for subgraph $G_{1}[H]$.
Output: A p-hom mapping σ for subgraph $G_{1}[H]$ to G_{2} and a set I of pairwise contradictory matching pairs.
if H is empty then return (\emptyset, \emptyset);
pick a node v of H and a node u from $H[v]$.good;
$H[v]$.minus := $H[v]$.good $\backslash\{u\} ; H[v]$.good := $\emptyset ;$
$H:=\operatorname{trimMatching}\left(v, u, H_{1}, H_{2}, H\right)$;
for each node v^{\prime} in H do /* partition H into H^{+}and H^{-}*/ if $H\left[v^{\prime}\right]$.good is not empty
then $\left\{H^{+}\left[v^{\prime}\right]\right.$.good $:=H\left[v^{\prime}\right]$.good; $H^{+}\left[v^{\prime}\right]$.minus $\left.:=\emptyset\right\}$
if $H\left[v^{\prime}\right]$.minus is not empty
then $\left\{H^{-}\left[v^{\prime}\right]\right.$.good $:=H\left[v^{\prime}\right]$.minus; $H^{-}\left[v^{\prime}\right]$.minus $\left.:=\emptyset\right\}$
$\left(\sigma_{1}, I_{1}\right):=$ greedyMatch $\left(H_{1}, H_{2}, H^{+}\right)$;
$\left(\sigma_{2}, I_{2}\right):=\operatorname{greedy} \operatorname{Match}\left(H_{1}, H_{2}, H^{-}\right)$;
$\sigma:=\max \left(\sigma_{1} \cup\{(v, u)\}, \sigma_{2}\right) ; I:=\max \left(I_{1}, I_{2} \cup\{(v, u)\}\right)$;
return (σ, I);
Procedure trimMatching
Input: Node v with matching node u, H_{1}, H_{2} and H.
Output: Updated matching list H.
for each node v^{\prime} in $H_{1}[v]$.prev $\cap H$ do /* prune the matching nodes for v 's parent nodes */ for any node u^{\prime} in $H\left[v^{\prime}\right]$.good such that $H_{2}\left[u^{\prime}, u\right]=0$ do $H\left[v^{\prime}\right]$ good $:=H\left[v^{\prime}\right]$ good $\backslash\left\{u^{\prime}\right\}$; $H\left[v^{\prime}\right]$.minus $:=H\left[v^{\prime}\right]$.minus $\cup\left\{u^{\prime}\right\} ;$
for each node v^{\prime} in $H_{1}[v]$.post $\cap H$ do /* prune the matching nodes for v 's children nodes */ for any node u^{\prime} in $H\left[v^{\prime}\right]$.good such that $H_{2}\left[u, u^{\prime}\right]=0$ do $H\left[v^{\prime}\right]$.good $:=H\left[v^{\prime}\right]$.good $\backslash\left\{u^{\prime}\right\}$; $H\left[v^{\prime}\right]$.minus $:=H\left[v^{\prime}\right]$.minus $\cup\left\{u^{\prime}\right\} ;$
return H;
Figure 4: Procedures greedyMatch and trimMatching
(lines 1-4), by the definition of p-hom. Similarly, it processes v 's children (lines 5-8). The updated H is then returned (line 9).

Example 5.1: We illustrate how compMaxCard computes a p-hom mapping from a subgraph of G_{p} to G of Fig. 1. For the lack of space we consider subgraphs G_{1}^{\prime} and G_{2}^{\prime} of G_{p} and G, respectively, where G_{1}^{\prime} is induced by \{books, textbooks, abooks\}, and G_{2}^{\prime} by $\{$ books, categories, booksets, school, audiobooks $\}$. We use the similarity matrix $\operatorname{mat}_{\mathrm{e}}()$ of Example 3.1 , and fix $\xi=0.5$. In the following, the nodes labeled with ' $*$ ' are the nodes chosen at line 2 in the procedure greedyMatch.

After step 7, the algorithm constructs an initial matching list H for G_{1}^{\prime} (see below), an adjacency matrix H_{2} for the transitive closure graph of G_{2}^{\prime}, and an adjacent list $H_{1}\left(G_{2}^{\prime}\right.$ and H_{1} are omitted).

Nodes in H	good	bad
books *	\{books*, booksets $\}$	\emptyset
textbooks	\{school $\}$	\emptyset
abooks	\{audiobooks $\}$	\emptyset

The algorithm then calls greedyMatch to produce a subgraph p hom mapping from G_{1}^{\prime} to G_{2}^{\prime}. At step 2 of greedyMatch, it maps books to books. After step 9, it splits H into H^{+}and H^{-}, and H^{+}is further partitioned into H_{a}^{+}and H_{a}^{-}by mapping abooks to audiobooks (shown below with empty lists omitted).

	Nodes	good	minus
H^{+}	textbooks	\{school $\}$	\emptyset
	abooks* *	\{audiobooks* $\}$	\emptyset
H^{-}	books *	\{booksets* $\}$	\emptyset
H_{a}^{+}	textbooks *	\{school* $\}$	\emptyset

For these lists, σ and I are as follows (empty sets omitted).

	σ	I
H_{a}^{+}	$\{($textbooks, school $)\}$	$\{($textbooks, school $)\}$
H^{-}	$\{($books, booksets $)\}$	$\{($books, booksets $)\}$
H^{+}	$\{($textbooks, school $),($abooks, audiobooks $)\}$	$\{($textbooks, school $)\}$
	$\{($ books, books $),($ textbooks, school $)$, H	(abooks, audiobooks $)\}$

After removing I from H, the size of H becomes smaller than that of σ_{m}, and compMaxCard returns \{(abooks, audiobooks), (textbooks, school), (books, books) $\}$ as the p-hom mapping.

Analysis. Algorithm compMaxCard possesses the performance guarantee given in Theorem 5.1 (see Appendix A for a proof).

Proposition 5.2: For any $G_{1}\left(V_{1}, E_{1}, L_{1}\right), G_{2}\left(V_{2}, E_{2}, L_{2}\right)$, mat() and ξ, algorithm compMaxCard finds a p-hom mapping σ from a subgraph of G_{1} to G_{2} such that qualCard (σ) is within $O\left(\log ^{2}\left(\left|V_{1}\right|\left|V_{2}\right|\right) /\left(\left|V_{1}\right|\left|V_{2}\right|\right)\right)$ of the optimal quality.

One can verify that algorithm compMaxCard is in $O\left(\left|V_{1}\right|^{3}\left|V_{2}\right|^{2}\right.$ $\left.+\left|V_{1}\right|\left|E_{1}\right|\left|V_{2}\right|^{3}\right)$ time, and is in $O\left(\left(\left|V_{1}\right|+\left|V_{2}\right|\right)^{2}\right)$ space.

Algorithm compMaxCard can be readily converted to approximation algorithms for $\mathrm{CPH}^{1-1}, \mathrm{SPH}$ and SPH ${ }^{1-1}$, as follows.
Approximation algorithm for CPH^{1-1}. A 1-1 p-hom mapping requires that no two nodes in G_{1} are mapped to the same node in G_{2}. Minor changes to compMaxCard suffice to do this: we add an extra step to procedure greedyMatch such that after node v in H is mapped to u in G_{2}, we remove u from $H\left[v^{\prime}\right]$.good and add u to $H\left[v^{\prime}\right]$.minus for each node v^{\prime} in H other than v. The extra step changes neither the worst-case complexity nor the performance guarantee of compMaxCard. This yields an approximation algorithm for CPH^{1-1}, referred to as compMaxCard ${ }^{1-1}$.

Approximation algorithms for SPH and SPH ${ }^{1-1}$. We develop an approximation algorithm, referred to as compMaxSim, for the maximum overall similarity problem SPH. The algorithm borrows a trick from [16]. The strategy of [16] for computing WIS is as follows. It first removes nodes with weights less than W / n, where W is the maximum node weight and n is the number of nodes in a graph. It then partitions the remaining nodes into $\log n$ groups based on theirs weights, such that the weight of each node in group $i(1 \leq i \leq \log n)$ is in the range $\left[W / 2^{i}, W / 2^{i-1}\right]$. Then for each i, it applies an algorithm for computing maximum independent sets (e.g., the algorithm of [7]) to the subgraph induced by the group i of nodes, and returns the maximum of the solutions to these groups.

Along the same lines, compMaxSim first partitions the initial matching list H into $\log \left(\left|V_{1}\right|\left|V_{2}\right|\right)$ groups, and then it applies compMaxCard to each group. It returns σ with the maximum qualSim (σ) among p-hom mappings for all these groups. Similarly, an approximation algorithm is developed for SPH^{1-1}, referred to as compMaxSim ${ }^{1-1}$. It is easy to verify that these algorithms are in $O\left(\log \left(\left|V_{1}\right|\left|V_{2}\right|\right)\left(\left|V_{1}\right|^{3}\left|V_{2}\right|^{2}+\left|V_{1}\right|\left|E_{1}\right|\left|V_{2}\right|^{3}\right)\right)$ time, and possess the same performance guarantee as compMaxCard.

6. Experimental Study

We next present an experimental study of our matching methods in Web mirror detection. Using real-life and synthetic data, we conducted two sets of experiments to evaluate the ability and scalability of our methods for matching similar Web sites vs. (a) conventional graph simulation [17] and subgraph isomorphism [9], and (b) vertex similarity based on similarity flooding [21].

Experimental setting. We used real-life data and synthetic data.
(1) Real-life data. The real-life data was taken from the Stanford WebBase Project [2], in three categories: Web sites for online stores, international organizations and online newspapers, denoted by sites 1, 2 and 3, respectively. For each Web site, we found an archive that maintained different versions of the same site.

Using the Web data we generated our graphs as follows. We randomly chose a Web site A in each category. We then produced a set T_{A} of Web graphs, using data from the archive for A. In each
graph, each node was labeled with the content of the page. The similarity between two nodes was measured by the textual similarity of their contents based on shingles [8].
Skeletons. These Web graphs are typically large. We thus considered their skeletons that retain only those nodes with a degree above a certain threshold. For each graph G in T_{A}, we produced its skeleton G_{s}, which is a subgraph of G such that for each node v in G_{s}, its degree $\operatorname{deg}(v) \geq \operatorname{avg} \operatorname{Deg}(G)+\alpha \times \max \operatorname{Deg}(G)$, where $\operatorname{avg} \operatorname{Deg}(G)$ and $\max \operatorname{Deg}(G)$ are the average and maximum node degree in G, respectively, and α is a constant in $[0,1]$.
Selection of Web graphs. For each Web site A, we generated T_{A} consisting of 11 graphs representing different versions of A. Based on T_{A}, we fixed $\alpha=0.2$ and produced a set of Web skeletons. Unfortunately, these graphs were beyond the capability of the algorithms we could find for computing maximum common subgraphs [1]. To favor [1], we also chose top 20 nodes with the highest degree, and constructed another set of skeletons. The information about the Web graphs and skeletons is reported in Table 2.
Since each set of the graphs represents different versions (snapshots) of the same Web site, they should match each other. Based on this, we evaluated the accuracy of our algorithms. More specifically, after T_{A} was generated, we sorted the 11 graphs based on their timestamp to get a Web graph sequence [23]. We treated the oldest one as pattern G_{1}, and tested whether various approaches could match the 10 later versions to G_{1}. We used the percentage of matches found as the accuracy measure for all the algorithms.
(2) Synthetic data. We also designed a generator to produce graphs, controlled by two parameters: the number m of nodes and the noise rate noise $\%$. Given m, we first randomly generated a graph pattern G_{1} with m nodes and $4 \times m$ edges. We then produced a set of 15 graphs G_{2} by introducing noise into G_{1}, with added complexity to make it hard to match G_{1}. More specifically, G_{2} was constructed from G_{1} as follows: (a) for each edge in G_{1}, with probability noise $\%$, the edge was replaced with a path of from 1 to 5 nodes, and (b) each node in G_{1} was attached with a subgraph of at most 10 nodes, with probability noise $\%$. The nodes were tagged with labels randomly drawn from a set L of $5 \times m$ distinct labels. The set L was divided into $\sqrt{5 \times m}$ disjoint groups. Labels in different groups were considered totally different, while labels in the same group were assigned similarities randomly drawn from $[0,1]$.
(3) Algorithms. We have implemented the following, all in Java: (a) all of our algorithms: compMaxCard, compMaxCard ${ }^{1-1}$, compMaxSim, and compMaxSim ${ }^{1-1}$, (b) the graph simulation algorithm of [17], (c) the algorithm of CDK [1] for finding a maximum common subgraph, denoted by cdkMCS, and (d) vertex similarity based on the similarity flooding (SF) algorithm of [21] (we also tested the algorithm of [6], which had results similar to those of SF; for the lack of the space we only report the results of SF).

The experiments were run on a machine with an AMD Athlon 64×2 Dual Core CPU and 2GB of memory. Each experiment was repeated over 5 times and the average is reported here.

Experimental results. We next present our experimental results. In both sets of experiments, we fixed the threshold for matching to be 0.75 ; i.e., a graph G_{1} is said to match G_{2} if there is a mapping σ from G_{1} to G_{2} such that qualCard $(\sigma) \geq 0.75$ (resp. qualSim (σ); see Section 3). We also assumed a uniform weight $w(v)=1$ for all nodes v when measuring the overall similarity. We used a unified accuracy measure defined above. This is because it is impractical to determine whether two graphs exactly match or not, and the two input graphs were guaranteed to match in all the experiments when generated. Recall that the problems are NP-hard (see Section 4).

Web Sites	Web graphs $G(V, E, L)$				Skeletons 1 $(\alpha=0.2)$		Skeletons 2 (top-20)	
	\# of nodes	\# of edges	$\operatorname{avgDeg}(G)$	$\operatorname{maxDeg}(G)$	\# of nodes	\# of edges	\# of nodes	\# of edges
Site 1	20,000	42,000	4.20	510	250	10,841	20	207
Site 2	5,400	33,114	12.31	644	44	214	20	20
Site 3	7,000	16,800	4.80	500	142	4,260	20	37

Table 2: Web graphs and skeletons of real life data

Algorithms	Accuracy (\%)						Scalability (seconds)					
	Skeletons $1(\alpha=0.2)$			Skeletons 2 (top-20)			Skeletons 1 ($\alpha=0.2$)			Skeletons 2 (top-20)		
	site 1	site 2	site 3	site 1	site 2	site 3	site 1	site 2	site 3	site 1	site 2	site 3
compMaxCard	80	100	60	80	100	60	3.128	0.108	1.062	0.078	0.066	0.080
compMaxCard ${ }^{1-1}$	40	100	30	80	100	40	2.847	0.097	0.840	0.054	0.051	0.064
compMaxSim	80	100	50	90	100	60	3.197	0.093	0.877	0.051	0.051	0.062
compMaxSim ${ }^{1-1}$	20	80	10	90	100	40	2.865	0.093	0.850	0.053	0.049	0.039
SF	40	30	20	80	80	70	60.275	3.873	7.812	0.067	0.158	0.121
cdkMCS	N / A	N / A	N / A	67	100	0	N/A	N / A	N / A	156.931	189.16	0.82

Table 3: Accuracy and scalability on real life data

Exp-1: Accuracy and efficiency on real-life data. In the first set of experiments, we evaluated the accuracy and efficiency of (1-1) p-hom against the conventional notions of graph matching as well as vertex similarity (SF), using the sets of Web skeletons.
In this set of experiments, graph simulation did not find matches in almost all the cases. This shows that the graph simulation algorithm, which aim at finding matches for an entire graph, is too restrictive when matching Web sites. As a result, we opt to report the results of our approximation algorithms, cdkMCS and SF only.

The accuracy and efficiency results are shown in Table 3. (1) In most cases, our algorithms found more than 50% of matches. (2) The p-hom algorithms found more matches than the 1-1p-hom ones since the latter pose stronger requirements than the former. (3) All algorithms found more matches on sites 1 and 2 than site 3 since a typical feature of site 3 (online news papers) is its timeliness, reflected by the rapid changing of its contents and structures.
On all graphs in skeletons 1, cdkMCS did not run to completion. While compMaxCard and compMaxSim found more than 50% of matches, SF found no more than 40%. On skeletons 2 , all of our algorithms found more matches than cdkMCS. In particular, on site 3 cdkMCS found no matches at all. In contrast, our algorithms found up to 60% of matches on the same data. Compared with SF, all of our algorithms performed better on sites 1 and 2, whereas SF did better on site 3. However, when the size of Web sites increased, the performance of SF deteriorated rapidly.
Our algorithms took less than 4 seconds in all these cases, while cdkMCS took 180 seconds even for graphs with only 20 nodes. Note that although sites 2 and 3 are about the same size, the running times of cdkMCS on them are not comparable. While the running time of SF was comparable to our algorithms on small Web sites (skeleton 2), it took much longer on large sites (skeleton 1).
From the results we can see the following: our algorithms (1) perform well on both the accuracy and efficiency on different types of Web sites, (2) find more matches than cdkMCS and SF, and (3) are much more efficient and robust than the other two methods.

Exp-2: Accuracy and efficiency on synthetic data. In the second set of experiments, using graphs randomly generated, we evaluated the performance of our algorithms and the graph simulation algorithm of [17], denoted by graphSimulation. However, we could not evaluate cdkMCS and SF, since cdkMCS did not run to completion on large graphs, and SF found constantly 0% of matches.
We investigated (a) the accuracy of our four algorithms, and (b) the efficiency of these algorithms and graphSimulation. We do not show the accuracy of graphSimulation as it found 0% of matches in all the cases. We evaluated the effects of the following parameters on the performance: the number of nodes m in G_{1}, the noise
ratio noise $\%$ and the node similarity threshold ξ. In each setting, the accuracy was measured by the percentage of matches found between G_{1} and a set of 15 graphs $\left(G_{2}\right)$ as mentioned above.
(1) Varying the size of G_{1}. To evaluate the impact of graph sizes on the accuracy and the scalability, we fixed noise $\%=10 \%$ and $\xi=0.75$, while varying m from 100 to 800 , where the number of nodes in G_{2} was in the range $[260,2225]$.

The accuracy results are reported in Fig. 5(a), which show that our approximation algorithms have accuracy above 65%, and are insensitive to the size of G_{1}. The scalability results are reported in Fig. 6(a), which show that all the algorithms scale well with the size m. The larger G_{1} is, the longer the algorithms take, as expected.
(2) Varying the noise. We evaluated the accuracy and performance of the algorithms w.r.t. noise $\%$: fixing $m=500$ and $\xi=0.75$, we varied noise $\%$ from 2% to 20%, where the number of nodes in G_{2} was in the range $[650,2100]$ accordingly.
Figure 5(b) shows that the accuracy of our algorithms is sensitive to the noise rate. But the accuracy is still above 50% even when noise $\%=20 \%$ and G_{2} had 2000 nodes. Figure 6(b) shows that while the scalability of graphSimulation is sensitive to noise\%, our algorithms are not. All these algorithms scale well with noise\%.
(3) Varying the similarity threshold. Finally, we evaluated the impact of ξ : fixing $m=500$ and noise $\%=10 \%$, we varied ξ from 0.5 to 1.0 , where the number of nodes in G_{2} was about 1,300 .

Figure 5(c) shows that the accuracy of our approximation algorithms is not very sensitive to ξ, with accuracy above 70% in all the cases. When ξ is between 0.6 and 0.8 , the accuracy is relatively lower. This is because (a) when ξ is low ($[0.5,0.6]$), it is relatively easy for a node in G_{1} to find its matching nodes in G_{2}; (b) when ξ is high (above 0.8), the chances for each node in G_{1} to find its copy in G_{2} are higher, by the construction of G_{2}. Figure 6(c) tells us that the scalability of all these algorithms is indifferent to ξ.
Summary. From the experimental results we find the following. (a) The notions of (1-1) p-hom are able to identify a large number of similar Web sites that are not matched by graph simulation, subgraph isomorphism and vertex similarity. On a set of organization sites, the accuracy of all of our algorithms is above 80%, as opposed to $0 \%, 0 \%$ and 30% by graphSimulation, cdkMCS and SF, respectively. (b) Our algorithms scale well with the sizes of the graphs, noise rates, and similarity threshold. They seldom demonstrated their worst-case complexity. Even for G_{1} of 800 nodes and G_{2} of 2000 nodes, all of our algorithms took less than two minutes.

7. Conclusion

We have proposed several notions for capturing graph similarity,

namely, p-hom, 1-1 p-hom, and quantitative metrics by maximizing either the number of nodes matched or the overall similarity. These notions support edge-to-path mappings and node similarity. We have established the intractability and the hardness to approximate for these problems. Despite the hardness, we have developed approximation algorithms for these problems, with provable guarantees on match quality. We have verified the effectiveness of our techniques using Web site matching as a testbed. Our experimental results have shown our methods are able to identify a number of similar Web sites that cannot be matched either by the conventional notions of graph matching or by vertex similarity alone.

This work is a first step to revising the conventional notions of graph matching. We are exploring areas in which our techniques are effective, beyond Web mirror detection. We also plan to improve our algorithms by leveraging indexing and filtering of [27, 30]. Another topic is to compare the accuracy and efficiency of our methods with the counterparts of the feature-based approaches.

Acknowledgments. Fan, Ma and Wu are supported in part by EPSRC E029213/1.

8. References

[1] Chemistry development kit (cdk). http://sourceforge.net/projects/cdk/.
[2] Stanford webbase. http://diglib.stanford.edu:8091/testbed/doc2/WebBase.
[3] M. Aery and S. Chakravarthy. eMailSift: Email classification based on structure and content. In ICDM, 2005.
[4] K. Bharat and A. Broder. Mirror, mirror on the Web: a study of host pairs with replicated content. Comput. Netw., 31(11-16), 1999.
[5] K. Bharat et al. A comparison of techniques to find mirrored hosts on the WWW. J. Am. Soc. Inf. Sci., 51(12), 2000.
[6] V. D. Blondel, A. Gajardo, M. Heymans, P. Senellart, and P. V. Dooren. A measure of similarity between graph vertices: Applications to synonym extraction and web searching. SIAM Rev., 46(4), 2004.
[7] R. B. Boppana and M. M. Halldórsson. Approximating maximum independent sets by excluding subgraphs. BIT, 32(2), 1992.
[8] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig. Syntactic clustering of the Web. Comput. Netw. ISDN Syst., 29(8-13), 1997.
[9] H. Bunke. Graph matching: Theoretical foundations, algorithms, and applications. Vision Interface, 3, 2000.
[10] L. Chen, A. Gupta, and M. E. Kurul. Stack-based algorithms for pattern matching on dags. In $V L D B, 2005$.
[11] J. Cheng, J. X. Yu, B. Ding, P. S. Yu, and H. Wang. Fast graph pattern matching. In ICDE, 2008.
[12] J. Cho, N. Shivakumar, and H. Garcia-Molina. Finding replicated Web collections. SIGMOD Rec., 29(2), 2000.
[13] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. The MIT Press, 2001.
[14] W. Fan and P. Bohannon. Information preserving XML schema embedding. TODS, 33(1), 2008.
[15] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, 1979.
[16] M. M. Halldórsson. Approximations of weighted independent set and hereditary subset problems. J. Graph Algorithms Appl., 4(1), 2000.
[17] M. R. Henzinger, T. A. Henzinger, and P. W. Kopke. Computing simulations on finite and infinite graphs. In FOCS, 1995.
[18] S. Joshi et al. A bag of paths model for measuring structural similarity in Web documents. In $K D D, 2003$.
[19] V. Kann. On the approximability of the maximum common subgraph problem. In STACS, 1992.
[20] C. Liu, C. Chen, J. Han, and P. S. Yu. Gplag: Detection of software plagiarism by program dependence graph analysis. In SIGKDD, 2006.
[21] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding: A versatile graph matching algorithm. In ICDE, 2002.
[22] E. Nuutila. An efficient transitive closure algorithm for cyclic digraphs. Inf. Process. Lett., 52(4), 1994.
[23] P. Papadimitriou, A. Dasdan, and H. Garcia-Molina. Web graph similarity for anomaly detection. Technical report, 2008.
[24] I. Sanz, M. Mesiti, G. Guerrini, and R. B. Llavori. Fragment-based approximate retrieval in highly heterogeneous XML collections. Data Knowl. Eng., 64(1):266-293, 2008.
[25] A. Schenker, M. Last, H. Bunke, and A. Kandel. Classification of Web documents using graph matching. IJPRAI, 18(3), 2004.
[26] D. Shasha, J. T. L. Wang, and R. Giugno. Algorithmics and applications of tree and graph searching. In PODS, 2002.
[27] Y. Tian and J. M. Patel. Tale: A tool for approximate large graph matching. In ICDE, 2008.
[28] V. V. Vazirani. Approximation Algorithms. Springer, 2003.
[29] Webconfs. Similar page checker. www.webconfs.com/similar-pagechecker.php.
[30] X. Yan, P. S. Yu, and J. Han. Substructure similarity search in graph databases. In SIGMOD, 2005.
[31] Z. Zeng, A. K. Tung, J. Wang, J. Feng, and L. Zhou. Edit distance evaluation on graph structures. In $V L D B, 2009$.
[32] L. Zou, L. Chen, and M. T. Özsu. Distance-join: Pattern match query in a large graph database. In $V L D B, 2009$.

Appendix A: Proofs

Proof of Theorem 4.1 (a)

The p-hom problem is to determine, given two graphs $G_{1}=$ $\left(V_{1}, E_{1}, L_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}, L_{2}\right)$, whether $G_{1} \precsim(e, p) G_{2}$. We show that the p-hom problem is NP-complete even when both G_{1} and G_{2} are DAGs.
We first show that this problem is in NP. An NP algorithm is given as follows: first guess a binary relation $R \subseteq V_{1} \times V_{2}$, and then check whether it is a p-hom mapping. It is in polynomial time (PTIME) to check whether R is a function and whether it is a p-hom mapping from G_{1} to G_{2}.
We next show that this problem is NP-hard by reduction from the 3SAT problem, which is NP-complete (cf. [15]).
An instance ϕ of 3SAT is of the form $C_{1} \wedge \cdots \wedge C_{n}$ where all the variables in ϕ are x_{1}, \ldots, x_{m}, each clause $C_{j}(j \in[1, n])$ is of the form $y_{j_{1}} \vee y_{j_{2}} \vee y_{j_{3}}$, and moreover, for $i \in[1,3], y_{j_{i}}$ is either $x_{p_{j i}}$ or $\overline{x_{j i}}$ for $p_{j i} \in[1, m]$. Here we use $x_{p_{j i}}$ to denote the occurrence of a variable in the literal i of clause C_{j}. The 3SAT problem is to determine whether ϕ is satisfiable.

Given an instance ϕ of the 3SAT problem, we construct two DAGs G_{1}, G_{2} and a similarity matrix mat() such that $G_{1} \precsim(e, p) G_{2}$ if and only if ϕ is satisfiable. The similarity threshold ξ is set to 1 .
(1) The DAG $G_{1}=\left(V_{1}, E_{1}, L_{1}\right)$ is defined as follows:

- $V_{1}=\left\{R_{1}, C_{1}, \ldots, C_{n}, X_{1}, \ldots, X_{m}\right\}$;
- $E_{1}=\left\{\left(R_{1}, X_{i}\right),\left(X_{p_{j 1}}, C_{j}\right),\left(X_{p_{j 2}}, C_{j}\right),\left(X_{p_{j 3}}, C_{j}\right)\right\}$ for each $i \in[1, m]$ and each $j \in[1, n]$; and
- we simply let $L_{1}(v)=v$ for each node $v \in V_{1}$.

Intuitively, graph G_{1} encodes the instance ϕ of 3SAT. Node X_{i} $(i \in[1, m])$ denotes variable x_{i}, and node $C_{j}(j \in[1, n])$ represents clause C_{j}. Node R_{1} is the root of graph G_{1}, which connects to all X_{i} nodes $(i \in[1, m])$. An edge $\left(X_{i}, C_{j}\right)$ in E_{1} encodes that variable x_{i} appears in clause C_{j}, i.e., x_{i} is one of the three variables $x_{p_{j 1}}, x_{p_{j 2}}$ and $x_{p_{j 3}}$.
For example, consider an instance for the 3SAT problem: $\phi=$ $C_{1} \wedge C_{2}$, where $C_{1}=x_{1} \vee x_{2} \vee x_{3}$ and $C_{2}=x_{2} \vee x_{3} \vee x_{4}$. The corresponding graph G_{1} is depicted in Fig. $7\left(G_{1}\right)$.
(2) The DAG $G_{2}=\left(V_{2}, E_{2}, L_{2}\right)$ is defined as follows:

- $V_{2}=\left\{R_{2}, T, F, X_{T 1}, X_{F 1}, \ldots, X_{T m}, X_{F m}, 0_{1}, \ldots, 7_{1}\right.$, $\left.\ldots, 0_{n}, \ldots, 7_{n}\right\}$.
- $E_{2}=\left\{\left(R_{2}, T\right),\left(R_{2}, F\right)\right\} \cup\left\{\left(T, X_{T i}\right),\left(F, X_{F i}\right)\right\} \cup E_{2}^{\prime}$, where $i \in[1, m]$.
- E_{2}^{\prime} contains 7×3 edges for each clause $C_{j}=y_{j_{1}} \vee y_{j_{2}} \vee y_{j_{3}}$ of $\phi(j \in[1, n])$, and there are in total $21 n$ edges in E_{2}^{\prime}.
(a) Treating true as 1 and false as 0 , we represent the truth assignments of clause C_{j} in terms of 8 nodes $C_{j}(\rho)$, where ρ ranges over all truth assignments of variables $x_{p_{j 1}}, x_{p_{j 2}}$ and $x_{p_{j 3}}$. Each node $C_{j}(\rho)$ is a three-bit constant $y_{j_{1}} y_{j_{2}} y_{j_{3}}$ with a subscript j, determined by $\rho\left(x_{p_{j 1}}\right), \rho\left(x_{p_{j 2}}\right)$ and $\rho\left(x_{p_{j 3}}\right)$, e.g., 2_{1}.
(b) For each truth assignment ρ of $x_{p_{j 1}}, x_{p_{j 2}}$ and $x_{p_{j 3}}$ that makes C_{j} true, E_{2}^{\prime} consists of the following edges: $\left(X_{T p_{j k}}, C_{j}(\rho)\right)$ if $\rho\left(X_{p_{j k}}\right)=$ true, or $\left(X_{F p_{j k}}, C_{j}(\rho)\right)$ if $\rho\left(X_{p_{j k}}\right)=$ false, where $k \in[1,3]$.
- $L_{2}(u)=u$ for each $u \in V_{2}$.

Intuitively, graph G_{2} encodes the truth assignments of the variables that satisfy the clauses in the instance ϕ of 3SAT. Node $X_{T i}\left(i \in[1, m]\right.$, resp. $\left.X_{F i}\right)$ means assigning variable x_{i} a true (resp. false) value. Nodes $\left\{0_{j}, \ldots, 7_{j}\right\}$ represent $C_{j}(\rho)$, which are denoted as a three-bit constant w.r.t. the truth assignments of the three variables in clause C_{j}. Node R_{2} is the root of graph G_{2}. Nodes T and F are simply included for the ease of exposi-

Figure 7: An example reduction for p-hom
tion. Edges from $X_{T i}$ or $X_{F i}$ to nodes $\left\{0_{j}, \ldots, 7_{j}\right\}$ encode the relationships between the truth assignments of the variables ($x_{p_{j 1}}$, $x_{p_{j 2}}$ and $x_{p_{j 3}}$) and the corresponding $C_{j}(\rho)$.

For example, graph G_{2} corresponding to the 3SAT instance ϕ given above is shown in Fig. 7. Observe that both G_{1} and G_{2} are DAGs.
(3) The similarity matrix mat() is defined as follows:

- mat $\left[R_{1}, R_{2}\right]=1$;
- $\operatorname{mat}\left[X_{i}, X_{T i}\right]=1$ and $\operatorname{mat}\left[X_{i}, X_{F i}\right]=1$ for $i \in[1, m]$;

○ $\operatorname{mat}\left[C_{j}, 0_{j}\right]=1, \ldots, \operatorname{mat}\left[C_{j}, 7_{j}\right]=1$ for $j \in[1, n]$;

- $\operatorname{mat}[v, u]=0$ for any other nodes $v \in V_{1}$ and $u \in V_{2}$.

The matrix mat() guarantees that (a) the root R_{1} of G_{1} must be mapped to the root R_{2} of G_{2}, (b) node $X_{i}(i \in[1, m])$ in G_{1} is mapped to either node $X_{T i}$ (true) or $X_{F i}$ (false) of G_{2}, and (c) node C_{j} in $G_{1}(j \in[1, n])$ is mapped to one of the nodes $\left\{0_{j}, \ldots, 7_{j}\right\}$ of G_{2}.

It is easy to verify that the above construction is in PTIME. We next verify that this is indeed a reduction from the 3SAT instance, i.e., there is a p-hom mapping from G_{1} to G_{2} if and only if the 3SAT instance ϕ is satisfiable.

Assume that there is a p-hom mapping λ from G_{1} to G_{2}. We show that there is a truth assignment ρ that makes ϕ true. The truth assignment ρ is defined as follows. For each variable $x_{i}(i \in$ $[1, m]), \rho\left(x_{i}\right)=$ true if $\lambda\left(X_{i}\right)=X_{T i}$, and $\rho\left(x_{i}\right)=$ false if $\lambda\left(X_{i}\right)$ $=X_{F i}$. Note that node X_{i} in G_{1} cannot be mapped to both nodes $X_{T i}$ and $X_{F i}$ in G_{2} since λ is a function. For each node $C_{j}(j \in$ $[1, n]), \lambda\left(C_{j}\right)$ guarantees that ρ must make clause C_{j} true, by the construction of graph G_{2}. Hence the truth assignment ρ indeed makes ϕ true.
Conversely, if there is a truth assignment ρ that makes ϕ true, we show that there is a p-hom mapping λ from G_{1} to G_{2}. The p-hom mapping λ is defined as follows: (1) $\lambda\left(R_{1}\right)=R_{2}$; (2) for each $i \in[1, m], \lambda\left(X_{i}\right)=X_{T i}$ if $\rho\left(x_{i}\right)=$ true, and $\lambda\left(X_{i}\right)=X_{F i}$ if $\rho\left(x_{i}\right)=$ false; and (3) for each $j \in[1, n], \lambda\left(C_{j}\right)=C_{j}(\rho)$ defined as above. It is easy to verify that λ is indeed a p-hom mapping.

Proof of Theorem 4.1 (b)

We show that the $1-1 p$-hom problem $\left(G_{1} \underset{(e, p)}{1-1} \quad G_{2}\right)$ is NPcomplete even when G_{1} is a tree and G_{2} is a DAG.

We first show that this problem is in NP. An NP algorithm is given as follows: first guess a binary relation $R \subseteq V_{1} \times V_{2}$, and then check whether it is a 1-1 p-hom mapping. It is in polynomial time (PTIME) to check whether R is an injective function and whether it is a p-hom mapping from G_{1} to G_{2}.

We next show that this problem is NP-hard by reduction from

Figure 8: An example reduction for 1-1 p-hom
the exact cover by 3 -sets problem (X3C), which is NP-complete (cf. [15]). Given a finite set $X=\left\{x_{1}, \ldots, x_{3 q}\right\}$ with $|X|=3 q$ and a collection $S=\left\{C_{1}, \ldots, C_{n}\right\}$ of 3-element subsets of X, where $C_{i}=\left\{x_{i 1}, x_{i 2}, x_{i 3}\right\}$ for $i \in[1, n]$, the X3C problem is to decide whether there exists an exact cover for X, that is, a sub-collection $S^{\prime} \subseteq S$ such that S^{\prime} is a partition of X, i.e., every element of X occurs in exactly one member of S^{\prime}.

Given an instance I of X3C, we construct two graphs G_{1} and G_{2} and a similarity matrix mat() such that there is a 1-1 p-hom mapping from G_{1} to G_{2} if and only if there exists an exact cover for I. The similarity threshold ξ is set to 1 .
(1) The tree $G_{1}=\left(V_{1}, E_{1}, L_{1}\right)$ is defined as follows:

- $V_{1}=\left\{R_{1}, C_{1}^{\prime}, \ldots, C_{q}^{\prime}, X_{11}^{\prime}, X_{12}^{\prime}, X_{13}^{\prime}, \ldots, X_{q 1}^{\prime}, X_{q 2}^{\prime}, X_{q 3}^{\prime}\right\}$;
- $E_{1}=\left\{\left(R_{1}, C_{i}^{\prime}\right),\left(C_{i}^{\prime}, X_{i 1}^{\prime}\right),\left(C_{i}^{\prime}, X_{i 2}^{\prime}\right),\left(C_{i}^{\prime}, X_{i 3}^{\prime}\right)\right\}$ for each $i \in[1, q]$; and
- $L_{1}(v)=v$ for each node $v \in V_{1}$.

Intuitively, the tree G_{1} encodes the structure of an exact cover S^{\prime} for the X3C instance I. If there exists such an S^{\prime}, then S^{\prime} consists of exactly q subsets, and each contains three distinct elements. Node R_{1} is the root node of tree G_{1}. Nodes $C_{i}^{\prime}(i \in[1, q])$ denote the subsets in the solution S^{\prime}. Moreover, we encode the three elements for each subset $C_{i}^{\prime}(i \in[1, q])$ with three distinct nodes $X_{i 1}^{\prime}, X_{i 2}^{\prime}$ and $X_{i 3}^{\prime}$. Edges from node C_{i}^{\prime} to nodes $X_{i 1}^{\prime}, X_{i 2}^{\prime}$ and $X_{i 3}^{\prime}$ indicate their relationships.
For example, consider an instance of X3C, where $X=$ $\left\{X_{11}, X_{12}, X_{13}, X_{21}, X_{22}, X_{23}\right\}$ and $S=\left\{C_{1}, C_{2}, C_{3}\right\}$ such that $C_{1}=\left\{X_{11}, X_{12}, X_{13}\right\}, C_{2}=\left\{X_{11}, X_{12}, X_{21}\right\}$ and $C_{3}=$ $\left\{X_{21}, X_{22}, X_{23}\right\}$. The tree G_{1} is depicted in Fig. $8\left(G_{1}\right)$.
(2) The DAG $G_{2}=\left(V_{2}, E_{2}\right)$ is defined as follows:

- $V_{2}=\left\{R_{2}, C_{1}, \ldots, C_{n}, X_{11}, X_{12}, X_{13}, \ldots, X_{q 1}, X_{q 2}, X_{q 3}\right\}$;
- $E_{2}=\left\{\left(R_{2}, C_{i}\right)\right\} \cup\left\{\left(C_{i}, X_{j k}\right)\right\}$, where $i \in[1, n], 1 \leq j \leq$ p, and $X_{j k} \in C_{i}$ for all $k \in[1,3]$; and
- $L_{2}(u)=u$ for each node $u \in V_{2}$.

Intuitively, DAG G_{2} encodes the instance of the X3C problem. Node R_{2} is the root of G_{2}. For each $i \in[1, n]$, node C_{i} represents the 3-element subset C_{i} in S, and nodes $X_{i 1}, X_{i 2}, X_{i 3}$ denotes the three elements of C_{i}. Again, edges from node C_{i} to nodes $X_{i 1}$, $X_{i 2}$ and $X_{i 3}$ indicate their relationships.

Referring the X3C instance given above, the DAG G_{2} is shown in Fig. $8\left(G_{2}\right)$.
(3) The similarity matrix mat() is defined as follows:

- $\operatorname{mat}\left[R_{1}, R_{2}\right]=1$;
- $\operatorname{mat}\left[C_{i}^{\prime}, C_{j}\right]=1$ for $i \in[1, q]$ and $j \in[1, n]$;
$\circ \operatorname{mat}\left[X_{i k}^{\prime}, X_{j g}\right]=1$ for $i, j \in[1, q]$ and $k, g \in[1,3]$;
- $\operatorname{mat}[v, u]=0$ for any other nodes $v \in V_{1}$ and $u \in V_{2}$.

The similarity matrix mat() guarantees that (a) the root R_{1} of G_{1} must be mapped to the root R_{2} of G_{2}, (b) node $C_{i}^{\prime}(i \in[1, q])$ of G_{1} is mapped to node $C_{j}(j \in[1, n])$ of G_{2}, and (c) node $X_{i k}^{\prime}$ in $G_{1}(i \in[1, q]$ and $k \in[1,3])$ is mapped to node $X_{j g}$ in G_{2} $(j \in[1, q]$ and $g \in[1,3])$.

It is easy to verify that the above construction is in PTIME. We next verify that this is indeed a reduction from the X3C instance,
i.e., there is a 1-1 p-hom mapping from G_{1} to G_{2} if and only if there is an exact cover for the X 3 C instance.

First, suppose that there exists a 1-1 p-hom mapping λ from G_{1} to G_{2}. From the mapping λ, we construct $S^{\prime}=\left\{\lambda\left(C_{i}^{\prime}\right)\right\}$ for each $C_{i}^{\prime} \in V_{1}$ of $G_{1}(i \in[1, q])$. We next show that S^{\prime} is an exact cover for the X3C instance.

Since the mapping λ is injective, it is easy to verify that (1) $\left|S^{\prime}\right|$ $=q$, and (2) for any two distinct nodes C_{i}^{\prime} and $C_{j}^{\prime}(i, j \in[1, q]$ and $i \neq j)$ in $G_{1}, \lambda\left(C_{i}^{\prime}\right) \neq \lambda\left(C_{j}^{\prime}\right)$, i.e., they are mapped to distinct nodes in G_{2}. From this it follows that if S^{\prime} is not an exact cover of S, there must exist $\lambda\left(C_{i}^{\prime}\right), \lambda\left(C_{j}^{\prime}\right) \in S^{\prime}(1 \leq i, j \leq q$ and $i \neq j)$ such that $\lambda\left(C_{i}^{\prime}\right) \cap \lambda\left(C_{j}^{\prime}\right) \neq \emptyset$. However, this implies that there exist two distinct nodes $X_{i k}^{\prime}$ (a child of node C_{i}^{\prime}) and $X_{j g}^{\prime}$ (a child of node $\left.C_{j}^{\prime}\right)$ in G_{1} such that $\lambda\left(X_{i k}^{\prime}\right)=\lambda\left(X_{j g}^{\prime}\right)$, which is impossible since λ is injective. Hence, S^{\prime} is indeed an exact cover.
To illustrate this, let us consider an example. Let λ be a 1-1 p hom mapping from G_{1} to G_{2} shown in Fig. 8 such that (1) $\lambda\left(R_{1}\right)$ $=R_{2}$, (2) $\lambda\left(C_{1}^{\prime}\right)=C_{1}, \lambda\left(C_{2}^{\prime}\right)=C_{3}$, and (3) $\lambda\left(X_{i k}^{\prime}\right)=X_{i k}$ for each $i \in[1,2]$ and each $k \in[1,3]$. Consider $S^{\prime}=\left\{\lambda\left(C_{1}^{\prime}\right), \lambda\left(C_{2}^{\prime}\right)\right\}=$ $\left\{C_{1}, C_{3}\right\}$. It is easy to verify that S^{\prime} is an exact cover for the X3C instance given above.

Conversely, suppose there is an exact cover S^{\prime} for the X3C instance. We show that there is 1-1 p-hom mapping λ from G_{1} to G_{2}. Assume w.l.o.g. that $S^{\prime}=\left\{C_{j_{1}}, \ldots, C_{j_{q}}\right\}$ such that $j_{i} \in[1, n]$ and $C_{j_{i}} \in S$ for $i \in[1, q]$.
We define a mapping λ as follows: (1) $\lambda\left(R_{1}\right)=R_{2}$, (2) $\lambda\left(C_{i}^{\prime}\right)$ $=C_{j_{i}}$ for $i \in[1, q]$, and (3) $\lambda\left(X_{i k}^{\prime}\right)=X_{j_{i} k}$ for $i \in[1, q]$ and $k \in[1,3]$, where $C_{j_{i}}=\left\{X_{j_{i} 1}, X_{j_{i} 2}, X_{j_{i} 3}\right\}$ and $X_{i 1}^{\prime}, X_{i 2}^{\prime}, X_{i 3}^{\prime}$ are the children of C_{i}^{\prime} in G_{1}. Then it is easy to verify that λ is a 1-1 p-hom mapping, using an argument similar to the one given above.

For instance, $S^{\prime}=\left\{C_{1}, C_{3}\right\}$ is an exact cover for the X3C instance in Fig. 8. Then the corresponding 1-1 p-hom mapping λ is constructed as follows: (1) $\lambda\left(R_{1}\right)=R_{2},(2) \lambda\left(C_{1}^{\prime}\right)=C_{1}$ and $\lambda\left(C_{2}^{\prime}\right)$ $=C_{3}$, (3) $\lambda\left(X_{i k}^{\prime}\right)=X_{i k}$ for $i \in[1,2]$ and $k \in[1,3]$.

Proof of Corollary 4.2

We show that the maximum cardinality problem (MCP) and the maximum overall similarity problem (MSP) are NP-complete for both p-hom and 1-1 p-hom. These problems are already NP-hard when only DAGs are considered.

Given graphs G_{1}, G_{2}, similarity matrix mat, threshold ξ, and a rational number K, MCP (resp. MSP) for p-hom (resp. 1-1 p-hom) is to determine whether there exists a p-hom (resp. 1-1 p-hom) mapping σ from G_{1} to G_{2} such that qualCard $(\sigma) \geq K$ (resp. qualSim $(\sigma) \geq K)$.

It is easy to verify that these problems are in NP. We next show that there exists a reduction from the p-hom problem to MCP (MSP) for p-hom, and the reduction from the 1-1 p-hom problem to MCP (MSP) for 1-1 p-hom is identical.

Given an instance $I_{1}=\left(G_{1}, G_{2}\right.$, mat, $\left.\xi\right)$ of the p-hom problem, we construct an instance $I_{2}=\left(G_{1}, G_{2}\right.$, mat $\left.{ }^{\prime}, \xi, K\right)$ of MCP (MSP) such that (1) $K=1$, (2) $\operatorname{mat}^{\prime}(v, u)=1$ for each node v in G_{1} and each node u in G_{2} such that $\operatorname{mat}(v, u) \geq \xi$, and $\operatorname{mat}^{\prime}(v, u)=$ $\operatorname{mat}(v, u)$ otherwise. The reduction is trivially in PTIME.

If there is a p-hom mapping σ such that qualCard $(\sigma) \geq 1$ for MCP or qualSim $(\sigma) \geq 1$ for MSP in instance I_{2}, then it is easy to verify that the mapping σ contains all nodes of G_{1}. From this, it follows that there exists a solution for instance I_{1} if and only if there exists a solution for instance I_{2}.

Proof of Theorem 4.3

We show that $\mathrm{CPH}, \mathrm{CPH}^{1-1}, \mathrm{SPH}$ and SPH^{1-1} are not approximable within $O\left(1 / n^{1-\epsilon}\right)$ for any constant ϵ, where n is the num-
ber of nodes in G_{1}, and G_{1} and G_{2} are input graphs.
We show that there exists an AFP-reduction (f, g) (see Section 4 for a detailed description) from the WIS problem to the SPH problem, from which the conclusion follows since the WIS problem is not approximable within $O\left(\left|V_{1}\right|^{1-\epsilon}\right)$ for any constant ϵ [16].

We first construct algorithm f. Given an instance I_{1} of the WIS problem as its input, algorithm f outputs an instance I_{2} of the SPH problem. The instance I_{1} is an undirected graph $G(V, E)$ with a positive weight $w(v)$ on each node v. The instance I_{2} consists of the following: (1) two directed graphs $G_{1}\left(V_{1}, E_{1}, L_{1}\right)$ and $G_{2}\left(V_{2}, E_{2}, L_{2}\right)$ such that $V_{1}=V_{2}=V, E_{1}$ contains the set of (arbitrarily directed) edges in $E, E_{2}=\emptyset$, and $L_{1}(v)=L_{2}(v)=v$ for each node $v \in V$; (2) a similarity matrix mat() such that $\operatorname{mat}(v, u)=1$ iff $L_{1}(v)=L_{2}(u)$ for any nodes v in G_{1} and u in G_{2}, and mat $(v, u)=0$ otherwise; (3) for each node $v \in V_{1}$, its weight is equal to $w(v)$ on G; and (4) a similarity threshold $\xi=1$. It is easy to verify that algorithm f is in PTIME.

We then construct algorithm g. Given a feasible solution $s_{2}=$ $\left\{\left(v_{1}, v_{1}\right), \ldots,\left(v_{n}, v_{n}\right)\right\}$ of the SPH instance I_{2}, algorithm g outputs $s_{1}=\left\{v_{1}, \ldots, v_{n}\right\}$. Algorithm g is trivially in PTIME.
We now show that (f, g) is an AFP-reduction from the WIS problem to the SPH problem. Let us consider the following.
Claim 1. Let $s_{1}=\left\{v_{1}, \ldots, v_{n}\right\}$ be a set of nodes of G in the WIS instance I_{1}, and $s_{2}=\left\{\left(v_{1}, v_{1}\right), \ldots,\left(v_{n}, v_{n}\right)\right\}$ be a mapping of the SPH instance I_{2}. Then s_{2} is p-hom mapping from subgraph $G_{1}\left[s_{1}\right]$ to graph G_{2} in I_{2} iff s_{1} is an independent set of G in I_{1}.

This suffices. For if it holds, then we can easily verify that algorithm g produces a solution of the WIS instance $I_{1}, \operatorname{obj}_{1}\left(s_{1}\right)=$ $\operatorname{obj}_{2}\left(s_{2}\right)$, and $\operatorname{opt}_{2}\left(I_{2}\right)=\operatorname{opt}_{1}\left(I_{1}\right)$. Recall that (1) obj${ }_{1}()$ (resp. $\mathrm{obj}_{2}()$) is a function measuring the quality of a solution to I_{1} (resp. I_{2}); and (2) opt ${ }_{1}$ (resp. opt ${ }_{2}$) is the quality of an optimal solution to I_{1} (resp. I_{2}). From this it follows that (f, g) is indeed an AFP-reduction from the WIS problem to the SPH problem.

We next prove Claim 1. First, suppose that s_{1} is an independent set in I_{1}. By the definition of p-hom, it is easy to verify that s_{2} is a p-hom mapping from subgraph $G_{1}\left[s_{1}\right]$ to G_{2} in I_{2}.

Conversely, suppose that s_{2} is a p-hom mapping from subgraph $G_{1}\left[s_{1}\right]$ to graph G_{2} in I_{2}. We then show that s_{1} is an independent set of graph G in I_{1}. By the definition of p-hom, (1) each node v_{i} ($i \in[1, n]$) of s_{1} in G_{1} is mapped to node $s_{2}\left(v_{i}\right)=v_{i}$ in G_{2}; and (2) for any nodes $v_{i}, v_{j}(i \neq j)$ in $s_{1},\left(v_{i}, v_{j}\right)$ is not in E_{1} since G_{2} has no edges at all $\left(E_{2}=\emptyset\right)$. Hence, s_{1} is an independent set of graph G_{1} in I_{2}. By the construction of graph G_{1} in algorithm f, s_{1} is indeed an independent set of graph G in I_{1}.

For the SPH ${ }^{1-1}$ problem, the above AFP-reduction suffices since the p-hom mapping constructed is indeed injective.

For the CPH (resp. CPH ${ }^{1-1}$) problem, by setting the weights of all nodes in G_{1} to 1 , the revised AFP-reduction (f, g) for SPH given above suffices again.

Proof of Theorem 5.1

We show that $\mathrm{CPH}, \mathrm{CPH}^{1-1}, \mathrm{SPH}$ and SPH^{1-1} are all approximable within $O\left(\log ^{2}\left(n_{1} n_{2}\right) /\left(n_{1} n_{2}\right)\right)$, where n_{1} and n_{2} are the numbers of nodes in input graphs G_{1} and G_{2}, respectively.

It suffices to show that there exists an AFP-reduction (f, g) from the SPH problem to the WIS problem, from which the conclusion follows since the WIS problem is approximable within $O\left(\log ^{2} n\right) / n$, where $n=n_{1} n_{2}$ is the number of graph nodes [16].
We first design algorithm f. Given an SPH instance I_{1} as its input, algorithm f produces a WIS instance I_{2}. The instance I_{1} consists of (1) two directed graphs $G_{1}\left(V_{1}, E_{1}, L_{1}\right)$ and $G_{2}\left(V_{2}, E_{2}, L_{2}\right)$, (2) a similarity matrix mat() on the nodes of G_{1}
and G_{2}, and (3) a similarity threshold ξ. Algorithm f first computes the transitive closure $G_{2}^{+}\left(V_{2}, E_{2}^{+}, L_{2}\right)$ of graph G_{2}, and then produces an undirected graph $G(V, E)$ with a positive weight on each node based on graphs G_{1} and G_{2}^{+}. The graph G, a product graph of G_{1} and G_{2}, is built as follows:
(1) $V=\left\{[v, u] \mid v \in V_{1}, u \in V_{2}\right.$, mat $\left.(v, u) \geq \xi\right\}$.
(2) For any nodes $\left[v_{1}, u_{1}\right],\left[v_{2}, u_{2}\right]$ in V, there exists an edge from [v_{1}, u_{1}] to $\left[v_{2}, u_{2}\right]$ in E iff they satisfy the following conditions: (a) $v_{1} \neq v_{2}$; (b) if there is a loop $\left(v_{1}, v_{1}\right)$ (resp. $\left(v_{2}, v_{2}\right)$) in G_{1}, then there must exist a loop $\left(u_{1}, u_{1}\right)$ (resp. $\left.\left(u_{2}, u_{2}\right)\right)$ in G_{2}^{+}; and (c) if $\left(v_{1}, v_{2}\right) \in E_{1}$, then $\left(u_{1}, u_{2}\right) \in E_{2}^{+}$.
(3) For each node $[v, u]$ in G, its weight is equal to $\operatorname{mat}(v, u)$.

Finally, algorithm f produces a graph $G^{c}\left(V, E^{c}\right)$, which is the WIS instance I_{2}. Graph $G^{c}\left(V, E^{c}\right)$ is the complement graph of $G(V, E)$ such that an edge $e \in E^{c}$ iff $e \notin E$. Here graph G^{c} allow no self-loops. It is easy to verify that algorithm f runs in PTIME.
We then design algorithm g as follows. Given a feasible solution $s_{2}=\left\{\left[v_{1}, u_{1}\right], \ldots,\left[v_{n}, u_{n}\right]\right\}$ of the WIS instance I_{2}, g outputs $s_{1}=\left\{\left(v_{1}, u_{1}\right), \ldots,\left(v_{n}, u_{n}\right)\right\}$. Algorithm g is obviously in PTIME.

We now show that (f, g) is an AFP-reduction from the SPH problem to the WIS problem. Let us consider the following.
Claim 2. Let $s_{2}=\left\{\left[v_{1}, u_{1}\right], \ldots,\left[v_{n}, u_{n}\right]\right\}$ be a set of nodes in G^{c}, and $s_{1}=\left\{\left(v_{1}, u_{1}\right), \ldots,\left(v_{n}, u_{n}\right)\right\}$. Then s_{2} is an independent set in graph G^{c} iff s_{1} is a p-hom mapping from subgraph $G_{1}\left[V_{1}^{\prime}\right]$ to G_{2} such that $V_{1}^{\prime}=\left\{v_{1}, \ldots, v_{n}\right\}$.

If Claim 2 holds, then we can easily verify that (1) algorithm g produces a solution (a p-hom mapping) for the SPH instance I_{1}, (2) $\operatorname{obj}_{1}\left(s_{1}\right)=\mathrm{obj}_{2}\left(s_{2}\right)$, and (2) opt $\left(I_{2}\right)=\mathrm{opt}_{1}\left(I_{1}\right)$. From this it follows that (f, g) is indeed an AFP-reduction.

We next prove Claim 2. Assume that s_{2} is an independent set of G^{c}. We show that s_{1} is a p-hom mapping from $G_{1}\left[V_{1}^{\prime}\right]$ to G_{2}. Since s_{2} is an independent set of G^{c}, s_{2} is a clique of G. Hence there exists an edge in graph G between any nodes $\left[v_{i}, u_{i}\right]$ and $\left[v_{j}, u_{j}\right](i \neq j)$ of s_{2}. The construction of G guarantees the following: (a) if there is an edge from nodes $\left[v_{i}, u_{i}\right]$ to $\left[v_{j}, u_{j}\right]$, then $v_{i} \neq v_{j}$, and (b) if there is an edge from v_{i} to v_{j} in G_{1}, then there must exist a path from v_{i} to v_{j} in G_{2}; (c) nodes with self-loops in G_{1} must be mapped to nodes with self-loops in G_{2}^{+}. Condition (a) guarantees that s_{1} is a function; and conditions (a), (b) and (c) together guarantee that s_{1} is indeed a p-hom mapping.

Conversely, if s_{1} is a p-hom mapping from $G_{1}\left[V_{1}^{\prime}\right]$ to G_{2}, we show that s_{2} is an independent set of G^{c}. This is trivial since for any nodes $\left[v_{i}, u_{i}\right]$ and $\left[v_{j}, u_{j}\right](i \neq j)$ in s_{2}, there is an edge ($\left.\left[v_{i}, u_{i}\right],\left[v_{j}, u_{j}\right]\right)$ in G, and thus no edge in G^{c}.

To prove the statement for the SPH ${ }^{1-1}$ problem, for each node pair $\left[v_{1}, u\right]$ and $\left[v_{2}, u\right]\left(v_{1} \neq v_{2}\right)$, we further add an edge ($\left[v_{1}, u\right],\left[v_{2}, u\right]$) to G^{c} given above. This suffices to guarantee that the independent set s_{2} corresponds to a 1-1 p-hom mapping.

For the CPH (resp. CPH^{1-1}) problem, by setting the weights of all nodes in G^{c} to 1 , the AFP-reduction (f, g) for SPH (resp. SPH ${ }^{1-1}$) given above suffices.

Proof of Proposition. 5.2

We show that given any graphs $G_{1}\left(V_{1}, E_{1}, L_{1}\right), G_{2}\left(V_{2}, E_{2}, L_{2}\right)$, $\operatorname{mat}()$ and ξ, algorithm compMaxCard finds a p-hom mapping σ from a subgraph of G_{1} to G_{2} such that qualCard (σ) is within $O\left(\log ^{2}\left(\left|V_{1}\right|\left|V_{2}\right|\right) /\left(\left|V_{1}\right|\left|V_{2}\right|\right)\right)$ of the optimal quality.

As pointed out in Section 5, the AFP-reductions in Theorem 5.1, together with the algorithm for the WIS problem [16] serve as naive approximation algorithms for these problems. These algorithms have the performance guarantee given above. Thus, all we need to

Algorithm ISRemoval
Input: An undirected graph $G(V, E)$.
Output: A clique C of G.

1. $i:=1 ; \quad\left(I_{1}, C_{1}\right):=\operatorname{Ramsey}(G)$;
2. while G is not empty do
3. $G:=G \backslash I_{i}$; /* remove independent set I_{i} from $G^{* / /}$
4. $i:=i+1 ;\left(C_{i}, I_{i}\right):=\operatorname{Ramsey}(G)$;
5.return $\max \left(C_{1}, C_{2}, \ldots, C_{i}\right)$.

Procedure Ramsey

Input: An undirected graph $G(V, E)$.
Output: An independent set I and a clique C of G.
1.if $G=\emptyset$ then return (\emptyset, \emptyset);
2.choose some node v of G do
3. $\left(C_{1}, I_{1}\right):=\operatorname{Ramsey}(\mathcal{N}(v))$;
/*subgraph $\mathcal{N}(v)$ of G consists of the neighbors of $v^{* /}$
4. $\left(C_{2}, I_{2}\right):=\operatorname{Ramsey}(\overline{\mathcal{N}}(v))$;
${ }^{/ *}$ subgraph $\overline{\mathcal{N}}(v)$ of G consists of the non-neighbors of $v^{* /}$
5.I $:=\max \left(I_{1}, I_{2} \cup\{v\}\right) ; \quad C:=\max \left(C_{1} \cup\{v\}, C_{2}\right)$;
6.return (I, C).

Figure 9: Algorithm ISRemoval

do is to show that given the same input, algorithm compMaxCard produces the same output as those naive algorithms.
To show this, it suffices to show that algorithm compMaxCard simulates algorithm ISRemoval, in a non-trivial way, for finding a maximum clique on the product graph (shown in Fig. 9). Algorithm ISRemoval is the dual of algorithm CliqueRemoval for finding a maximum independent set [7]. Recall that the maximum independent set problem on graph G is equivalent to the maximum clique problem on the complement graph G^{c} of G, and vice versa.

One can easily see how algorithm compMaxCard in Fig. 3 mimics algorithm ISRemoval. We next show, in detail, how procedure greedyMatch in Fig. 4 simulates procedure Ramsey (see a detailed explanation in [7]). This is based on the following connections:
(1) The matching-list H for graph G_{1} corresponds to the product graph $G=G_{1} \times G_{2}$, and each node v in G_{1} and another node u in $H[v]$.good or $H[v]$.minus together correspond to the node $[v, u]$ in the product graph G. From these it follows that lines 1 and 2 of greedyMatch simulate lines 1 and 2 of Ramsey, respectively.
(2) The matching-lists H^{+}and H^{-}correspond to $\mathcal{N}([v, u])$ and $\overline{\mathcal{N}}([v, u])$, respectively, where nodes v, u come from line 2 of greedyMatch. Since computing the neighbors or non-neighbors of a node on graphs is trivial, it is not explicitly addressed in Ramsey. In greedyMatch, however, we need to distinguish neighbors from non-neighbors in the matching-list H, instead of the product graph directly. Procedure trimMatching in Fig. 4 is thus introduced to solve this problem. Indeed, it is trimMatching that makes it possible to operate on the product graph directly.
(3) Procedure greedyMatch $\left(H_{1}, H_{2}, H\right)$ returns (σ, I), where σ and I correspond to a clique and an independent set in the product graph G respectively, as defined in the proof of Theorem 5.1. From this it follows that lines 10, 11, 12 and 13 of greedyMatch simulate lines $3,4,5$ and 6 of Ramsey, respectively.
Putting all these together, we have shown that compMaxCard indeed simulates ISRemoval, i.e., given the same input, they always produce the the same output.

Appendix B: Optimization Techniques

We next propose techniques to improve the efficiency of our algorithms given in Section 5, while retaining or even improving their match quality. These techniques had been implemented when con-

(a) Partitioning graph G_{1}

(b) Compressing graph G_{2}^{+}

Figure 10: Reducing the graph size
ducting the experiments reported in Section 6.
Partitioning graph G_{1}. Consider the set S_{1} of nodes in G_{1} such that for any node $v \in S_{1}, \operatorname{mat}(v, u)<\xi$ for each node u in G_{2}. That is, no node in S_{1} can find a p-hom match in G_{2}. Obviously the nodes in S_{1} do not contribute to any p-hom mapping from any subgraph of G_{1} to graph G_{2}. Therefore, we only need to consider the subgraph $G_{1}\left[V_{1} \backslash S_{1}\right]$ of G_{1} instead of entire G_{1}, when computing p-hom mappings from G_{1} to G_{2}.
Observe that $G_{1}\left[V_{1} \backslash S_{1}\right]$ may become disconnected even if G_{1} is connected. For example, G_{1} depicted in Fig. 10(a) is connected, in which node C has no p-hom nodes in G_{2}. After removing node C from G_{1}, the remaining subgraph has three pairwise disconnected components G_{11}, G_{12} and G_{13}. It is easy to show:
Proposition 1: Let graph G_{1} consist of k pairwise disconnected components G_{11}, \ldots, and $G_{1 k}$. If σ_{i} is a maximum p-hom mapping from a subgraph of $G_{1 i}$ to G_{2}, then $\bigcup_{i=1}^{i=k}\left(\sigma_{i}\right)$ is a maximum p-hom mapping from a subgraph of G_{1} to G_{2}.
This allows us to treat each component separately, and take as the final mapping the union of those mappings for the components. Better yet, if some group $G_{1 i}$ contains a single node v, e.g., G_{12} in Fig. 10(a), a match is simply $\{(v, u)\}$, where $\operatorname{mat}(v, u) \geq \operatorname{mat}\left(v, u^{\prime}\right)$ for any other node u^{\prime} in G_{2}. Note that finding pairwise disconnected components is linear-time equivalent to finding strongly connected components, which is in linear time [13].
The partitioning strategy may improve match quality. To see this let us examine the approximation bound $y=\log ^{2} n / n$. Obviously, (1) if $n=e^{2} \approx 7.39, y$ is maximal, where e is the base of the natural logarithms; (2) when $n \geq e^{2}, y$ is monotonically decreasing; and (3) if $n \leq e^{2}$, it is affordable to use an exact algorithm to find the exact maximum p-hom mapping. Thus when $n \geq e^{2}$, the larger n is, the worse the performance guarantee is. This tells us that reducing G_{1} to $G_{1}\left[V_{1} \backslash S_{1}\right]$ and partitioning $G_{1}\left[V_{1} \backslash S_{1}\right]$ to disconnected components indeed improve match quality.
Compressing graph G_{2}^{+}. Each strongly connected component (SCC) in G_{2} forms a clique in its transitive closure graph G_{2}^{+}. By a clique in G we mean a set C of nodes such that subgraph $G[C]$ is a complete graph (i.e., any pair of nodes is connected by an edge).
We can replace each clique in G_{2}^{+}with a single node with a selfloop, whose label is the bag of all node labels in the clique. We denote the compressed graph by $G_{2}^{*}\left(V_{2}^{*}, E_{2}^{*}\right)$, where each node in V_{2}^{*} represents a (maximum) clique in G_{2}^{+}, and there exists an edge from nodes u_{1}^{*} to u_{2}^{*} in G_{2}^{*} iff there is an edge from a node in clique u_{1}^{*} to a node in clique u_{2}^{*} in G_{2}^{+}. For example, Figure 10(b) shows a graph G_{2}, its transitive closure graph G_{2}^{+}and its compressed graph G_{2}^{*}. Note that G_{2}^{+}is often much smaller than G_{2}.
By capitalizing on bags of labels, our algorithms can be modified such that any strong (1-1) p-hom mapping they find from a subgraph of G_{1} to G_{2}^{+}is also a strong (1-1) p-hom mapping from a subgraph of G_{1} to G_{2}, with the same quality. By compressing G_{2} to G_{2}^{+}, the performance of the algorithms is significantly improved. The compressing process incurs little extra cost since sCCs of G_{2} can be identified during the computation of G_{2}^{+}[22].

