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Abstract—This demo presents BEAMS, a system that
automatically discovers and monitors top-k complex events over
graph streams. Unlike conventional event detection over streams
of items, BEAMS is able to (1) characterize and detect complex
events in dynamic networks as graph patterns; and (2) perform
online event discovery with a class of bounded algorithms that
compute changes to top-k events in response to the transactions
in graph streams, and incurs a minimized time cost determined
by the changes, independent of the size of graph streams. We
demonstrate : a) how BEAMS identifies top-k complex events
as graph patterns in graph streams, and supports ad-hoc event
queries online, b) how it copes with the sheer size of real-world
graph streams with bounded event detection algorithm; and c)
how the GUI of BEAMS interacts with users to support ad-
hoc event queries that detect, browse and inspect trending events.

Video: https://youtu.be/lVUGM0Fa17Q

I. INTRODUCTION

Event detection over graph streams has found prevalent
use in dynamic social networks, communication networks,
and cyber security [3]. A graph stream GT is a (possibly
infinite) stream of graphs {G0, . . . , } where each graph Gi

is a “snapshot” of the evolving GT at timestamp t. Given GT ,
a configuration of event models and quality measures (Fig. 3),
the problem is to track top-k events in GT , and to provide
answers to ad-hoc queries upon requests.

The need for online event detection motivates us to develop
BEAMS, an event detection system over graph streams.

Example 1: The Offshore dataset 1 covers 40 years of offshore
entities and their financial activities. BEAMS reports two top
active events (Fig. 1), where P1 identifies “most active offshore
jurisdiction (tax heavens) (variable x) of Asian companies
since 1965”, and specifies “British Virgin Island (BVI)” with
8294 active entities as the most active one; and P2 finds a
significant move of active bearer shares companies in 2005
from “BVI” to “Panama”, due to that the former cracked down
on bearer shares. A third active event P3 for point of interests
recommendation states that “if a user x and his friends y who
have checked in at a bar (via e.g., Facebook Place) retweet
each other, and x checks in at a nearby sport club, then he is
likely to visit the same bar (as his friends). �

Complex events over networks are often characterized as
graph patterns [3], [5] (as illustrated in Fig. 1). The detection
and tracking of such events are more involved than their
counterparts over item streams [2]. Temporal graph pattern
matching [3] and mining [5] have been studied to find events

1https://offshoreleaks.icij.org/pages/database

Fig. 1: Event patterns

as temporal graph patterns, and to identify active entities in
dynamic networks, respectively. By contrast, BEAMS has the
following unique features not addressed in prior work.

1) BEAMS supports online event detection as general graph
patterns. To balance the expressiveness of event model and
the cost of online mining, it uses (quadratic-time) approximate
pattern matching to characterize complex events and their
occurrences, rather than strict queries that require (NP-hard)
subgraph isomorphism [5].

2) BEAMS supports bounded event detection in response to
new transactions in a graph stream GT . Given a pair of
consecutive snapshots Gi and Gi+1, BEAMS incrementally
updates the top-k events by automatically tracking the affected
patterns and their matches, characterized as affected area
(AFF), which are necessarily checked by a batch counterpart.
BEAMS incurs a cost bounded by a function of the size of AFF
only, independent of the size of GT . That is, it performs only
“necessary” amount of work to correctly update the events.

3) BEAMS provides user-friendly, easy-to-configure GUI to
support ad-hoc event queries over graph streams.

II. INCREMENTAL EVENT DETECTION

We overview the event model and the incremental mining
paradigms of BEAMS, and then introduce its architecture.

Event patterns. Unlike conventional systems, BEAMS charac-
terizes an event as a graph pattern P that contains entities and
their temporal relationships. It also supports user-specified “fo-
cus labels” (e.g., “Asia” in Example 1) in P to discover events
that pertain to the labels (e.g., P1 in Fig. 1). BEAMS supports
approximate graph pattern matching to capture approximate
matches of P . By default, it uses dual-simulation [3].

Top-k event mining. BEAMS supports practical need to
discover k most “frequent” events. Given GT over time interval
[1, T ], the support of an event pattern P in GT (denoted as

supp(P,GT )) is defined as
∑

i∈[1,T ] α
T−i |occ(P (ū),i)|

|Vi| , where

occ(P (ū), i) refers to the match set of the focus ū of P in
snapshot Gi, and α ∈ (0, 1] refers to a decay factor. Intuitively,
supp(P,GT ) quantifies the frequency of P by aggregating the
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Fig. 2: Architecture of BEAMS
match size over each snapshot Gi, with “discounted” effect
of past data. We are interested in detecting “maximal” event
patterns, for which no larger patterns are frequent.

Given graph stream GT , and a configuration of (optional)
parameters including: support threshold θ, focus ū, decay
factor α, integer k, and an event size bound bp, BEAMS tracks
top-k maximal frequent events Σ pertaining to ū, θ and bp such
that the total support

∑
Pi∈Σ supp(Pi) is maximized.

Bounded algorithm. At the core of BEAMS is an incremental
event detector, which incrementally updates top-k events by
processing edge updates in batches. (1) The detector “cold
starts” the online detection by invoking a batch pattern mining
algorithm to compute top-k events Σ0 over the first snapshot
G0 from scratch. (2) For each batch updates Δi that changes
Gi to Gi+1, it invokes a bounded incremental mining algorithm
to update Σi to Σi+1. To this end, it dynamically determines
a set of pattern candidates that need to be re-verified due to
edge updates in Gi (e.g., having candidates within d-hop of
the updates in Gi), as well as their candidate matches in Gi.
This fraction of data is characterized as affected area (AFF),
which are necessarily checked by any batch algorithm in order
to update Σi at any timestamp i.

By performing incremental verification for affected pat-
terns, the overall cost is determined by a function of the size
of AFF, independent with the size of Gi and GT .

III. SYSTEM ARCHITECTURE

The architecture of BEAMS (shown in Fig. 2) contains
four modules. (1) Graphical User Interface (GUI) takes mining
configurations from users, and returns visualizations to demon-
strate the top-k events (Fig. 3). (2) A Load shedder applies the
principle of load shedding [4] to reduce transactions at run-
time for affected events, (3) The Incremental event detector
dynamically maintains affected area AFF with Affected area
detector, and incrementally verify the affected patterns (In-
cremental Event Verifier). (4) The verified patterns are fed to
top-k event maintainer, which are used to update top-k event
set and visually interpreted at GUI.

We implemented BEAMS in Java with the property graph
model2. The source code is available at https://goo.gl/g0erkj.
An online demo is available at https://goo.gl/nsuAkV.

IV. DEMONSTRATION OVERVIEW

Datasets. We use (1) IDS3, which records daily intrusion
activity over a cyber network with 33M entities (e.g., alert,

2https://neo4j.com
3http://www.unb.ca/research/iscx/dataset/iscx-IDS-dataset.html

Fig. 3: GUI: Event Monitoring and Ad-hoc Queries

host, logs) and 144M relations (e.g., application, protocol); (2)
Citation, a citation network4 with 4.3M entities and 21.7M
edges (e.g., citation, published at); and (3) Offshore (Exam-
ple 1) with 839K business entities and 3.6M financial relations.

Ease of use. We invite the users to play with the user-friendly
GUI of BEAMS (see Fig. 3) to experience an interactive event
detection scenarios. Users are also able to track the trend of
specific events over time via the display panel.

Performance of bounded event detection. We demonstrate the
performance of BEAMS compared with (1) its batch counter-
part, which rediscovers the events from scratch; and (2) a vari-
ant that uses GraMi to mine frequent subgraphs as events [1].
We show that BEAMS is feasible over large networks: it takes
on average 6.7 seconds upon single batch of updates of 40K
transactions, and outperforms its batch counterpart by 52.93
times. On the other hand, its GraMi-based counterpart does
not terminate over graphs of 10M entities after 10 hours.

Ad-hoc event queries. We invite users to retrieve interesting
events with ad-hoc queries. Two example queries are: (1)
Most active tax heavens of Asian companies, where the top-3
events discovered by BEAMS over Offshore specifies “British
Virgin Island, “Panama” and “Bahamas” as active tax heavens;
and (2) Top venues with most papers that cited targeted
data mining topics in the last 5 years. BEAMS reports a
“trace” of an evolving citation pattern with focus “data-driven
recommendation” over Citation from 2000 to 2015 (Fig. 3).
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