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Abstract It is increasingly common to find graphs in which

edges are of different types, indicating a variety of relation-

ships. For such graphs we propose a class of reachability

queries and a class of graph patterns, in which an edge is

specified with a regular expression of a certain form, ex-

pressing the connectivity of a data graph via edges of var-

ious types. In addition, we define graph pattern matching

based on a revised notion of graph simulation. On graphs in

emerging applications such as social networks, we show that

these queries are capable of finding more sensible informa-

tion than their traditional counterparts. Better still, their in-

creased expressive power does not come with extra complex-

ity. Indeed, (1) we investigate their containment and mini-

mization problems, and show that these fundamental prob-

lems are in quadratic time for reachability queries and are in

cubic time for pattern queries. (2) We develop an algorithm

for answering reachability queries, in quadratic time as for

their traditional counterpart. (3) We provide two cubic-time

algorithms for evaluating graph pattern queries, as opposed to

the NP-completeness of graph pattern matching via subgraph

isomorphism. (4) The effectiveness and efficiency of these al-

gorithms are experimentally verified using real-life data and

synthetic data.

Keywords graph reachability, graph pattern queries, regu-

lar expressions, containment, equivalence, minimization
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1 Introduction

It is increasingly common to find data modeled as graphs in

a variety of areas, e.g., computer vision, knowledge discov-

ery, biology, chem-informatics, dynamic network traffic, so-

cial networks, semantic Web, and intelligence analysis. To

query data graphs, two classes of queries are being widely

used:

(a) Reachability queries, asking whether there exists a path

from one node to another [1–6].

(b) Graph pattern queries, to find all subgraphs of a data

graph that are isomorphic to a pattern graph [7–11] (see

[12] for a survey).

In emerging applications such as social networks, edges

in a graph are typically “typed”, denoting various relation-

ships such as marriage, friendship, work, advice, support, ex-

change, co-membership, etc. [13]. In practice one often wants

to query the connectivity of a pair of nodes via edges of par-

ticular types, or to identify graph patterns with edges of cer-

tain types, as illustrated by the following real-life example

taken from [14].

Example 1.1 Consider an Essembly network service [14],

where users post and vote on controversial issues and top-

ics. Each person has attributes such as userid, job, contact

information, as well as a list of issues they support or dis-
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approve, denoted by “sp” and “dsp”, respectively. There are

four types of relationships between a pair of individuals: (1)

friends-allies (fa), connecting one user to a friend, if she

shares the same views on most (more than half) topics that

her friend votes for; (2) friends-nemeses (fn), from one user

to a friend if she disagrees with her friend on most topics;

(3) strangers-allies (sa), relates a user to a stranger whom

she agrees with on most topics they vote; and (4) strangers-

nemeses (sn), from a user to a stranger with whom she dis-

agrees on most topics they both vote.

Figure 1 depicts a part of the network as a graph G that

involves a debate on cloning research. In the graph G, each

node denotes a person, and each edge has a type in {fa, fn,

sa, sn}. Consider two queries Q1 and Q2 on G, which are

also shown in Fig. 1.

(1) Query Q1 is a reachability query, which is to find all

biologists (nodes C) who support “cloning”, along with those

doctors (nodes B) who are friends-nemeses (via fn) of some

users supported by C within 2 hops (via fa�2).

(2) Query Q2 is a pattern query, issued by a person D iden-

tified by id “Alice001” who supports “cloning”. The person

would like to find all her friends-nemeses (via fn) who are

doctors, and are against “cloning”. She also wants to know if

there are people such that (a) they are biologists (nodes C),

support “cloning research”, and are connected within 2 hops

to someone via fa relationships, who is in turn within 2 hops

to person D via sa (edge (C,D)); (b) they are in a scientist

group with friends all sharing the same view towards cloning

(edge (C,C)); and moreover, (c) these biologists are against

those doctor friends of her, and vice versa, via paths of certain

patterns (edges (C, B) and (B,C)).

Observe the following. (1) The graph G has multiple edge

types (fa, fn, sa, sn) indicating various relationships, which

are an important part of the semantics of the data. (2) Tradi-

tional reachability queries are not capable of expressing Q1.

Indeed, they characterize connectivity by the existence of a

path of arbitrary length, with edges of arbitrary types. In

contrast, Q1 aims to identify connectivity via a path

(a) with edges of particular types and patterns, and

(b) with a bound on its length (hops).

In other words, Q1 bears richer semantics than its conven-

tional counterparts. (3) Traditional graph pattern queries can-

not express Q2 for the two reasons given above; moreover,

to find sensible information for person D, it should logically

allow

(c) its nodes to map to multiple nodes in G, e.g., from B in

Q2 to both B1 and B2 in G, and

(d) its edges map to paths composed of edges with cer-

tain types, e.g., from the edge (C,D) in Q2 to the path

C3
fa−→ C1

sa−−→ D1 in G.

That is, traditional pattern queries defined in terms of sub-

graph isomorphism are insufficient to express Q2. �

As suggested by the example, emerging applications high-

light the need for revising the traditional reachability queries

and graph pattern queries to incorporate edge types and

bounds on the number of hops. In addition, it is necessary

to revise the notion of graph pattern matching to accommo-

date the semantics of data in new applications, and more-

over, to reduce its complexity. Indeed, the np-completeness

of subgraph isomorphism makes it infeasible to find matches

in large data graphs.

Contributions& roadmap To this end we propose a class

of reachability queries, as well as a class of graph pattern

queries, defined in terms of a subclass F of regular expres-

sions.

Fig. 1 Querying essembly network
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(1) We introduce reachability queries (RQs) and graph pat-

tern queries (PQs) in Section 2. In such a query, each

node specifies search conditions on the content of the

graph nodes, and an edge is associated with a regular

expression in F, specifying the connectivity via a path

of certain edge types and of a possibly bounded length.

In addition, we define pattern matching by extending

graph simulation [15], instead of using subgraph iso-

morphism. For instance, queries Q1 and Q2 in Fig. 1

can be expressed as an RQ and a PQ, respectively.

(2) We study fundamental problems for these queries: con-

tainment, equivalence, and minimization (Section 3),

along the same lines as for XML tree pattern queries

[16,17]. We show that these problems are solvable in

O(n2) time and O(n3) time for RQs and PQs, respec-

tively, where n is the size of the queries. Contrast these

low polynomial time (ptime) bounds with their counter-

parts for general regular expressions, which are pspace-

complete [18]. As an immediate application, we de-

velop an algorithm in O(n3) time to minimize PQs,

which yields an effective optimization strategy.

(3) We develop two algorithms to answer RQs (Section

4). One employs a matrix of shortest distances between

nodes. It is in quadratic time, the same as its traditional

counterpart [3]. That is, the increased expressive power

of RQs does not incur extra complexity. The other a

adopts bi-directional search with an auxiliary cache (us-

ing a hashmap to store the indices) to keep track of fre-

quently asked items. It is used when it is too costly to

maintain all of the shortest distances for large graphs.

(4) We provide two algorithms for evaluating PQs (Sec-

tion 5), both in cubic time if a matrix of shortest dis-

tances between nodes is used. One follows a join-based

approach, while the other adopts a split-based approach

commonly used in labeled transition systems. Contrast

this with the intractability of graph pattern matching

based on subgraph isomorphism. These tell us that the

revised notion of graph pattern matching allows us to

efficiently find sensible patterns in emerging applica-

tions.

(5) Using both real-life data (YouTube and Global Terror-

ism Database [19]) and synthetic data, we conduct an

experimental study (Section 6). We find that our evalua-

tion algorithms for RQs and PQs scale well with large

data graphs, and are able to identify sensible matches

that their traditional counterparts fail to find. We also

find that the minimization algorithm of PQs is effec-

tive in improving performance.

Related work This work extends [20] by including detailed

proofs of the fundamental problems in connection with (1)

the uniqueness of graph pattern query answers (Section 2),

i.e., graph pattern queries are well defined; and (2) the con-

tainment, equivalence and minimization problems of graph

reachability queries and graph pattern queries (Section 3). (3)

A detailed algorithm for pattern query minimization is also

included (Section 3).

The idea of using regular expressions to query graphs is not

new: it has been adopted by query languages for semistruc-

tured data such as UnQL [21] and Lorel [22]. There has also

been theoretical work on conjunctive regular path queries

(CRPQs, e.g., [23]) and recently on extended CRPQs (ECR-

PQs) [24], which also define graph queries using regular ex-

pressions. However, these languages are defined with general

regular expressions. As a result, the problem for evaluating

CRPQs is already np-complete, and it is pspace-complete for

ECRPQs [24]. For those queries the containment and min-

imization analyses are also pspace-hard. We are not aware

of any existing efficient algorithms for answering graph pat-

tern queries defined with regular expressions. In contrast, this

work defines graph queries in terms of a subclass of regu-

lar expressions, and revises the notion of pattern matching

based on an extension of graph simulation. It aims to strike

a balance between the expressive power needed to deal with

common graph queries in emerging applications, and the in-

creased complexity incurred. This allows us to conduct the

static analyses (containment and minimization) and evaluate

queries efficiently, in low ptime.

Recently several graph query languages that support lim-

ited regular expressions have been proposed, e.g., GQ [25],

SoQL [26], and SPARQL [27]. GQ supports arbitrary attributes

on nodes, edges and graphs. SoQL is a SQL-like language

that allows users to retrieve paths satisfying various condi-

tions. SPARQL [27] is a query language tailored for RDF

graphs coded as a set of triples (subject, predicate and ob-

ject). Queries on graphs with labeled directed or undirected

edges and label or unlabeled nodes have also been studied

[28]. These languages, among other things, adopt subgraph

isomorphism for graph pattern search, which differs from our

work.

A number of algorithms have been developed for evalu-

ating reachability queries [1–3]. These algorithms typically

associate certain coding with graph nodes, and detect connec-

tivity by inspecting the coding of relevant nodes. The coding,

however, tells us neither the distance between nodes nor the
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types of edge on the shortest path. Distance queries [1,29,30]

compute the distance between a pair of nodes, but do not con-

sider edge types. Recently, a class of label-constraint reach-

ability queries was proposed in [6], which ask whether one

node reaches another via a path whose edge labels are in a set

of labels. However, none of these can express the reachability

characterized by regular expressions, such as Q1.

Graph pattern matching is typically defined in terms of

subgraph isomorphism [7–11] (see [12,31] for surveys). Ex-

tensions of subgraph isomorphism are studied in [11,32,33],

which extend mappings from edge-to-edge to edge-to-path.

Nevertheless, the problem remains np-complete. Closer to

this work is the notion of bounded simulation studied in [34],

which extends graph simulation [15,35] for graph pattern

matching by allowing bounds on the number of hops, and

makes graph pattern matching a ptime problem. This work

further extends [34] by incorporating regular expressions as

edge constraints, and for these more expressive graph queries,

it develops efficient evaluation algorithms and settles their

fundamental problems for containment, equivalence and min-

imization, which are important for query optimizations. No

previous work has studied these.

The containment and minimization problems are classical

problems for any query language (e.g., [36]). These problems

have been well studied for XPath (e.g., [16,17,37]). How-

ever, we are not aware of previous work on these problems

for graph pattern queries.

There has also been a host of work on structural in-

dices [38,39] for evaluating regular expression queries. Un-

fortunately, the indexing structures are developed for tree-

structured data (XML) in which there is a unique path be-

tween two nodes; they cannot be directly used when process-

ing general graphs.

2 Graph reachability and pattern queries

In this section, we start with data graphs, and then introduce

reachability queries (RQs) and graph pattern queries (PQs)

on data graphs.

Data graphs A data graph is a directed graph G = (V, E,

fA, fC), where (1) V is a finite set of nodes; (2) E ⊆ V ×V is a

finite set of edges, in which (v, v′) denotes an edge from node

v to v′; (3) fA is a function defined on V such that for each

node v in V , fA(v) is a tuple (A1 = a1, . . . , An = an), where

Ai = ai (i ∈ [1, n]), representing that the node v has a constant

value ai for the attribute Ai, and denoted as v.Ai = ai; and (4)

fC is a function defined on E such that for each edge e in E,

fC(e) is a color symbol in a finite alphabet Σ.

Intuitively, the function fA carries node properties, e.g., la-

bels, keywords, blogs, comments, ratings [40]; the function

fC specifies edge types, i.e., relationships; and the alphabet

Σ denotes all possible edge types, e.g., marriage, friendship,

work, advice, support, exchange [13].

Example 2.1 Figure 1 shows a data graph G = (V, E, fA,

fC), where (1) each edge e in E carries a color fC(e) in {fa,
fn, sa, sn}; and (2) each node v in V has a tuple fA(v),

where (a) fA(Bi) = (job = “doctor”, dsp = “cloning”) for

i ∈ [1, 2], (b) fA(C j) = (job = “biologist”, sp = “cloning”)

for j ∈ [1, 3], (c) fA(D1) = (uid= “Alice001”), and (d) fA(H1)

= (job= “physician”). �

We shall use the following notations.

(1) A path ρ in G is denoted as v0
e1−→ v1

e2−→ · · · vn−1
en−→ vn,

where (a) vi ∈ V for each i∈ [0, n], and (b) e j= (v j, v j+1)

is in E for each j ∈ [1, n]. The length |ρ| of ρ is n, i.e.,

the number of edges in ρ. We say a path ρ is nonempty

if |ρ| � 1.

(2) Abusing notations for trees, we refer to a node v2 as a

child of a node v1 (or v1 as a parent of v2) if there exists

an edge (v1, v2) in E, and refer to a node v2 as a descen-

dant of a node v1 (or v1 as an ancestor of v2) if there

exists a nonempty path from v1 to v2 in G.

Reachability queries A reachability query (RQ) is defined

as Qr = (u1, u2, fu1 , fu2 , fe), where (1) u1 and u2 are two

nodes; (2) fui (i ∈ [1, 2]) is a predicate defined as a conjunc-

tion of atomic formulas of the form of “A op a” such that A

denotes an attribute of the node ui, a is a constant value, and

op is a comparison operator in the set {<,�,=,�, >,�}; and

(3) fe is a regular expression drawn from the subclass:

F ::= c | c�k | c+ | FF.

Here (1) c is either a color symbol in Σ or a wildcard _, where

the wildcard _ is a variable standing for any color symbol in

Σ; it can be expressed as a regular expression c1 ∪ · · · ∪ cm,

when Σ = {ci | i ∈ [1,m]}; (2) k is a positive integer, and c�k

denotes the regular expression c1 ∪ c2 ∪ · · · ∪ ck, where c j

( j ∈ [1, k]) denotes j occurrences of c; and (3) c+ denotes one

or more occurrences of c.

We shall use L( fe) to denote the regular language defined

by fe, i.e., the set of all strings that can be parsed by the gram-

mar fe.

Semantics. Consider an RQ Qr = (u1, u2, fu1 , fu2 , fe) posed

on a data graph G = (V, E, fA, fC).
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We say that a node v in G matches the node u1 in Gr, de-

noted as v ∼ u1, if for each atomic formula “A op a” in fu1 ,

there exists an attribute A in fA(v) such that v.A op a; simi-

larly for v ∼ u2. Intuitively, the predicates fu1 and fu2 specify

search conditions for query nodes.

We say that a pair (v1, v2) of nodes in G matches the reg-

ular expression fe, denoted as (v1, v2) ≈ fe, if there exists a

nonempty path ρ = v1
e1−→ v′1

e2−→ v′2 · · · v′n−1

en−→ v2 in G such

that the string fC(e1) · · · fC(en) is in L( fe).

The result Qr(G) of Qr on G is the set of node pairs (v1, v2)

such that v1 ∼ u1, v2 ∼ u2, and (v1, v2) ≈ fe.

Intuitively, (v1, v2) is in Qr(G) if v1 and v2 satisfy the condi-

tions specified by u1 and u2, respectively, and moreover, there

exists a nonempty path from v1 to v2 in G such that the edge

colors on the path match the pattern specified by the regular

expression fe. We say v1 (respectively v2) is a match of u1

(respectively u2).

Example 2.2 The query Q1 shown in Fig. 1 is an RQ in

which fe = fa�2fn, the node C has the predicate sp=“cloning”

and job = “biologist”, and the node B has the predicate job
= “doctor”.

When Q1 is posed on the data graph G shown in Fig. 1 and

described in Example 2.1, the answer Q1(G) is shown in Fig.

2. Indeed, Bi ∼ B (i ∈ [1, 2]) and C j ∼ C ( j ∈ [1, 3]). In addi-

tion, (C2, B1) ≈ fe since there exists a path C2
fa−→ C3

fn−→ B1 in

G, and the string fa fn matches the regular expression fa�2fn.

Similarly, (C1, B1) ≈ fe, (C1, B2) ≈ fe, and (C2, B2) ≈ fe.

Hence the query result Q1(G) = {(C1, B1), (C1, B2), (C2, B1),

(C2, B2)}. �

Remark. (1) Observe that a single edge in query Qr is mapped

to a nonempty path in the data graph G; moreover, the edge

colors on the path have to match the regular expression fe. (2)

RQs are more expressive than traditional reachability queries

studied in e.g., [2,6,30], by capturing edge relationships with

regular expressions.

Graph pattern queries Using RQs as building blocks, we

Fig. 2 Results of the queries Q1 and Q2 on G

next define graph pattern queries.

A graph pattern query (PQ) is a directed graph Qp =

(Vp, Ep, fv, fe), where (1) Vp is a finite set of nodes; (2)

Ep ⊆ Vp × Vp is a finite set of edges, in which (u, u′) de-

notes an edge from node u to u′; and (3) the functions fv and

fe are defined on Vp and Ep, respectively, such that for each

edge e = (u, u′) ∈ Ep, Qr = (u, u′, fv(u), fv(u′), fe) is an RQ.

In the rest part of this paper, we shall simply use fe to repre-

sent the regular expression assigned by the function fe to an

edge e unless specified otherwise.

Semantics. When the graph pattern query Qp is evaluated on

a data graph G = (V, E, fA, fC), the query result Qp(G) is the

maximum set {(e, S e) | e ∈ Ep} that satisfies the following

conditions:

(1) for all edges e = (u1, u2) in Qp, S e ⊆ Qe(G), where

Qe = (u1, u2, fv(u1), fv(u2), fe) is an RQ;

(2) for each edge e = (u1, u2) in Qp, if a pair (v1, v2) of

nodes in G is in S e, then (a) for each edge e1 = (u1, u3)

in Qp, there exists a node v3 in G such that (v1, v3) ∈
S e1 ; and (b) for each edge e2 = (u2, u4) in Qp, there

exists a node v4 in G such that (v2, v4) ∈ S e2 ; and

(3) there exists no edge e in Qp such that S e is empty. In

other words, Qp(G) = ∅ if for some e in Qp, S e is empty.

We say v1 (respectively v2) is a match of u1 (respectively

u2). Here the size of Qp(G) is defined as
∑

e∈Ep
|S e|, where

|S e| is the number of elements in S e.

Intuitively, QP(G) defines a relation R ⊆ Vp × V . To see

this, for each edge e = (u1, u2) in Qp, denote by Qe =

(u1, u2, fv(u1), fv(u2), fe) its associated RQ embedded in Gp.

Then for a node u1 ∈ Vp and a node v1 ∈ V , (u1, v1) is in R

if for each edge e = (u1, u2) emanating from u1 in Gp, there

exists a nonempty path ρ from v1 to v2 in G such that (1) the

node v1 satisfies the search conditions specified by fv(u1) in

the RQ Qe; (2) the path ρ is constrained by the regular ex-

pression fe; and (3) (u2, v2) is also in R. In addition, R covers

all the nodes in Vp and moreover, it is maximum, i.e., for

all such relation R′, R′ ⊆ R. The result Qp(G) is simply R

grouped by edges in Ep. In particular, if condition (3) above

is not satisfied, Qp(G) is empty.

From this one can see that PQs are defined in terms of an

extension of graph simulation [15], by (a) imposing search

conditions on the contents of nodes; (b) mapping an edge in a

pattern to a nonempty path in a data graph (i.e., the child u2 of

u1 is mapped to a descendant of v2 of v1); and (c) constraining

the edges on the path with a regular expression. This differs
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from the traditional notion of graph pattern matching defined

in terms of subgraph isomorphism [12] and graph simulation

[15].

Example 2.3 The query Q2 given in Fig. 1 is a PQ. In Q2

each node carries search conditions, and each edge has an

associated regular expression, as shown in Fig. 1.

When the query Q2 is posed on the data graph G of Fig. 1,

the query result Q2(G) is depicted in Fig. 2 and is shown in

the table below:

edge matches edge matches

(B,C) {(B1,C3), (B2,C3)} (C,C) {(C3,C3)}
(B,D) {(B1,D1), (B2,D1)} (C,D) {(C3,D1)}
(C, B) {(C3, B1), (C3 , B2)}

Indeed, one can verify that Bi ∼ B (i ∈ [1, 2]), C j ∼ C ( j ∈
[1, 3]) and D1 ∼ D. In addition, the edge from C to D (labeled

with fa�2sa�2) in Q2 is mapped to a path C3
fa−→ C1

sa−−→ D1 in

G; similarly for other edges in Q2.

Observe that the node pair (C1, B1) in G is not a match of

the edge (C, B) in Q2, since there exists no path in G from C1

to B1 that satisfies fn. In light of a similar reason, (C1,D1) in

G is not a match of the edge (C,D) in Q2, although there ex-

ists a path C1
fa−→C2

fa−→C1
sa−−→D1 in G that satisfies fa�2sa�2.�

Remark. (1) RQs are a special case of PQs, which consist of

two nodes and a single edge.

(2) Bounded simulation [34] is a special case of PQs, by

only allowing patterns in which (a) there is only a single sym-

bol c in Σ, i.e., only a single edge type is allowed, and (b) all

edges are labeled with either c�k or c+, where k is a positive

integer.

One can readily verify the following, which confirms that

the semantics of PQs is well defined.

Proposition 2.1 For any data graph G and any graph pattern

query Qp, there is a unique result Qp(G).

Proof (i) We first show that there exists a query result. We

consider all possible sets of {(e, S e) | S e is a set of node pairs

in G for each edge e in Qp }, which satisfy conditions (1) and

(2) of the semantics of PQs. Note that those sets are not nec-

essarily maximum, and the number of such possible sets is

finite.

We define the query result to be a set with the maximum

size, which, as will be seen shortly, is unique. If there exists

an edge e such that S e = ∅ in the set, the query result is ∅ by

condition (3) of the semantics of PQs.

(ii) We then show the uniqueness by contradiction. Assume

that there exist two distinct maximum query results Q1
p(G)

and Q2
p(G). We then show that there exists a result larger than

both Q1
p(G) and Q2

p(G). Given two such sets S 1 = {(e, S 1
e) | e

is an edge in Qp} and S 2 = {(e, S 2
e) | e is an edge in Qp},

we define the union of S 1 and S 2 as {(e, S 1
e ∪ S 2

e) | e is an

edge in Qp}, denoted by S 1 ∪ S 2. Observe that Qi
p is possibly

empty when S i
e is empty for some e, where i ∈ [1, 2]. Let

Qp(G) = Q1
p(G) ∪ Q2

p(G). By the definition of PQs, one can

readily verify that Qp(G) is a query result larger than both

Q1
p(G) and Q2

p(G). This contradicts the assumption that both

Q1
p(G) and Q2

p(G) are maximum.

By (i) and (ii) above, we have the conclusion. �

3 Fundamental graph queries problems

We next investigate containment, equivalence, and minimiza-

tion of graph queries. As remarked earlier, these problems are

important for any query language [36]. We focus on graph

pattern queries (PQs), but state the relevant results for reach-

ability queries (RQs).

3.1 Containment and equivalence

We first study containment and equivalence of PQs.

Containment Given two PQs Q1 = (V1
p, E1

p, f 1
v , f 1

e ) and

Q2 = (V2
p, E2

p, f 2
v , f 2

e ), we say that Q1 is contained in Q2,

denoted by Q1 � Q2, if there exists a mapping λ from E1
p

to E2
p such that for any data graph G and any edge e in Q1,

S e ⊆ S λ(e), where (e, S e) ∈ Q1(G), (λ(e), S λ(e)) ∈ Q2(G), and

Q1(G),Q2(G) are the query results of Q1,Q2 on G, respec-

tively.

Intuitively, the mapping λ serves as a renaming function

such that Q1(G) is mapped to Q2(G) after the renaming. For

an edge e = (u1, u2) in Q1, let λ(e) = (w1,w2). Then Q1 � Q2

as long as for any data graph G and any node v in G, (1) if

v ∼ u1, then v ∼ w1, denoted as u1 � w1; and (2) u2 � w2.

Moreover, (3) L( fe) ⊆ L( fλ(e)), denoted as e |= λ(e).

Example 3.1 Consider three PQs given in Fig. 3, in which

all Bi’s (i ∈ [1, 3]) carry the same predicates; similarly for all

C j’s ( j ∈ [1, 6]). Denote by λi, j a mapping from Qi to Q j.

(1) Q2 � Q1: there exists a mapping λ2,1, where λ2,1(B2,

C4) = (B1,C1). Note that the mapping is not unique,

e.g., both λ2,1(B2,C4) = (B1,C2) and λ2,1(B2,C4) =

(B1, C3) are valid mappings.

(2) Q2 � Q3, by letting λ2,3(B2,C4) = (B3,C5).
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Fig. 3 Example for containment and equivalence

(3) Q3 � Q1, indeed, one can define λ3,1(B3,C5) = (B1, C1)

and λ3,1(B3,C6) = (B1, C3).

(4) Q1 � Q3, by letting λ1,3(B1,C1) = (B3,C5), λ1,3(B1,

C2)= (B3,C5) and λ1,3 (B1,C3)= (B3,C6). �

Equivalence Given two graph pattern queries Q1 and Q2,

we say that Q1 and Q2 are equivalent, denoted by Q1 ≡ Q2,

if Q1 � Q2 and Q2 � Q1.

For instance, for Q1 and Q3 of Fig. 3, we have that Q1 ≡
Q3, since Q1 � Q3 and Q3 � Q1 by Example 3.1.

For any PQs Q1 and Q2, observe that Q1 ≡ Q2 does

not necessarily imply that Q1(G) = Q2(G) for a data graph

G. Nevertheless, there exist mappings λ1,2 and λ2,1 such

that λ1,2(Q1(G)) ⊆ Q2(G) and λ2,1(Q2(G)) ⊆ Q1(G), where

λ(Q(G)) stands for {(λ(e), S λ(e)) | (e, S e) ∈ Q(G)}. That is,

Q1(G) and Q2(G) are mapped to each other after the renam-

ing by λ1,2 and λ2,1, respectively.

Complexity bounds We next establish the complexity

bounds of the containment and equivalence problems for

PQs. We first present a revision of similarity [15].

Consider two PQs Q1 = (V1
p, E1

p, f 1
v , f 1

e ) and Q2 = (V2
p,

E2
p, f 2

v , f 2
e ). We say that Q2 is similar to Q1, denoted by

Q1 � Q2, if there exists a binary relation S r ⊆ V1
p × V2

p such

that

(1) for any (u1,w1) ∈ S r, (a) w1 � u1, and (b) for each edge

e = (u1, u2) ∈ E1
p, there exists an edge e′ = (w1,w2) ∈ E2

p

such that (u2,w2) ∈ S r and e′ |= e; and

(2) for each edge e′ = (w,w′) ∈ E2
p, there exists an edge e =

(u, u′) ∈ E1
p such that (a) (u,w) ∈ S r, (u′,w′) ∈ S r , and

(b) e′ |= e.

Example 3.2 Recall PQs Q1 and Q2 from Example 3.1. One

can verify that Q1 � Q2. Indeed, there exists a binary relation

S r = {(B1, B2), (C1,C4), (C2,C4), (C3,C4)}, which satisfies

the conditions of the revised similarity given above:

(1) for each (u,w) ∈ S r, w � u (the condition (1)(a));

(2) for each edge e in Q1 (i.e., (B1,C1), (B1,C2) and

(B1,C3)), there exists an edge e′ in Q2 (i.e., (B2,C4))

such that e′ |= e, since L(h�1) is contained in L(h�1),

L(h�2) and L(h�3) (the condition (1)(b)); and

(3) for the edge e′ = (B2,C4) in Q2, there is an edge e′ =
(B1,C1) in Q1 such that e′|=e (the condition (2)). �

The relationship between the revised graph similarity and

the containment of PQs is shown below.

Lemma 3.1 Given two PQs Q1 and Q2, Q1 � Q2 if and

only if Q1 is similar to Q2 (i.e., Q2 � Q1).

Proof (1) Assume first Q1 � Q2. We next show Q2 � Q1 by

proof by contradiction. Suppose that Q2 � Q1, we construct

a data graph G from Q1 such that Q1 � Q2, which contradicts

the assumption.

Assume w.l.o.g that Q1 = (V1
p, E

1
p, f 1

v , f 1
e ). The data graph

G(V, E, fA, fC) is constructed from Q1 as follows: (a) for each

node u ∈ V1
p , create a node u′ ∈ V such that fA(u′) satisfies

f 1
v (u), and (b) for each edge (u1, u2) ∈ E1

p, create a path from

nodes u′1 to u′2 in G, passing through only a set of dummy

nodes satisfying f 1
e (u1, u2). If Q2 � Q1, either condition (1)

or condition (2) of the revised similarity is violated. No mat-

ter which condition is violated, we can easily refine the data

graph G given above so that Q2 � Q1 when evaluated on G.

(2) Conversely assume that Q2 � Q1. We next show Q1 �
Q2. Since Q2 � Q1, there exists a similarity relation S r from

Q2 to Q1. By the definition of the revised similarity, we can

readily construct a mapping λ from the edges in Q1 to the

edges in Q2 based on S r, and we then prove that the λ is in-

deed what we need.

Consider a data graph G. For any edge e = (w1,w2) in Q1

with λ(e′) = (u1, u2) in Q2, we have the following:

(a) for any graph node v, if v ∼ w1, then v ∼ u1 since

w1 � u1, and if v ∼ w2, then v ∼ u2 since w2 � u2; and

(b) by the semantics of PQs, for any (v1, v2) ∈ S e, we can

easily show that (v1, v2) ∈ S λ(e′), where (e, S e) ∈ Q1(G)

and (λ(e′), S λ(e′)) ∈ Q2(G), i.e., S e ⊆ S λ(e). From this

Q1 � Q2 immediately follows.

From (1) and (2) above Lemma 3.1 follows. �

It is known that graph similarity is solvable in quadratic

time [15]. Extending the techniques of [15] by leveraging

Lemma 3.1, one can verify the following.

Theorem 3.1 For PQs Q1 and Q2, it is in cubic time to

determine whether Q1 � Q2 and Q1 ≡ Q2.
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To prove this, we first show the following for RQs, which

are a special case of PQs.

Proposition 3.1 For RQs Q1 and Q2, it is in quadratic time

to check whether Q1 � Q2 and Q1 ≡ Q2.

Proof Consider two RQs Q1 = (u1, u2, fu1 , fu2 , fe1) and

Q2 = (w1,w2, fw1 , fw2 , fe2), where fu1 , fu2 , fw1 , and fw2 are

satisfiable. It is easy to verify that Q1 � Q2 if and only

if u1 � w1, u2 � w2, and L( fe1) ⊆ L( fe2). Hence, it suf-

fices to show the following. (1) testing u1 � w1 can be

done in O(| fu1 || fw1 |) time; (2) testing u2 � w2 can be done

in O(| fu2 || fw2 |) time; and (3) testing L( fe1) ⊆ L( fe2) can be

done in linear time. For if these hold, then one can check

whether Q1 � Q2 in quadratic time. Moreover, one can de-

cide whether Q1 ≡ Q2 by inspecting whether Q1 � Q2 and

Q2 � Q1, both in quadratic time.

We next verify these one by one.

(1) We first show that testing u1 � w1 can be done in

O(| fu1 || fw1 |) time.

Observe that u1 � w1 if and only if each sub-formula A

op a in fu1 is implied by fw1 . There are in total four cases to

consider, based on the type of op.

Case (a). When op is =. We first find (i) the smallest value

a< in fw1 associated with the attribute A and the operator <;

(ii) the smallest value a� in fw1 associated with the attribute

A and the operator �; (iii) the largest value a> in fw1 asso-

ciated with the attribute A and the operator >; and (iv) the

largest value a� in fw1 associated with the attribute A and the

operator �.

If a� = a�, then A op a is implied by fw1 . If not, it further

checks whether A = a appears in fw1 . If “yes”, then A = a is

implied by fw1 .

Case (b). When op is �. Again, it suffices to find the val-

ues a<, a�, a>, a� and a=. Then A op a is implied by fw1 iff

a< � a, a� � a and a= � a.

Case (c). When op is <, � or >, it is similar to case (b).

Case (d). When op is �. Again, we find the values a<, a�,

a>, a� and a=. Then A op a is implied by fw1 iff a< > a and

a� > a, a> < a and a� < a, a= � a, or A � a appears in fw1 .

The checking takes O(| fw1 |) time in all these cases.

(2) Similar to (1), we can show that testing u2 � w2 can be

done in O(| fu2 || fw2 |) time.

(3) Finally, we show that testing L( fe1) ⊆ L( fe2) can be

done in linear time. Note that we use a restricted form of reg-

ular expressions, as defined in Section 2. In such a regular

expression F, we define the length of an atomic component

c, c�k or c+ to be 1. Hence, the length of F, denoted by |F |, is

simply the number of its atomic components.

To determine whether L( fe1) ⊆ L( fe2), we sequentially

scan fe1 and fe2 once. It is easy to verify that for any two regu-

lar expressions F1 and F2, if L(F1) ⊆ L(F2), then |F1| = |F2|.
It suffices to consider the following cases in the sequential

scanning process:

Case (a). L(ck1 ck2 · · · ckn ) ⊆ L(ck′1 ck′2 · · · ck′n ), where (k1 + · · · +
kn) � (k′1 + · · · + k′n).

Case (b). L(ck1
1 ck2

2 · · · ckn
n ) ⊆ L(c

k′1
1 c

k′2
2 · · · ck′n

n ), where (k1 + · · ·+
kn) � (k′1+ · · ·+k′n), and, moreover, ci is either ci or _ for each

i ∈ [1, n].

Case (c). The + operator is treated as an integer, but is larger

than any positive integer k.

For each case above, it can be tested in linear time. Putting

all these together, we conclude that testing L( fe1) ⊆ L( fe2)

can be done in linear time. �

By using Proposition 3.1 and extending the algorithm for

computing standard graph simulations [15], we are now ready

to prove Theorem 3.1.

Proof of Theorem 3.1 It is sufficient to show that check-

ing Q1 � Q2 is in cubic time. We next develop an algorithm

to test whether Q1 � Q2, by testing whether Q1 is similar

to Q2 (i.e., Q2 � Q1) based on Lemma 3.1. It consists of the

following steps:

(i) First, determine whether u � w for all nodes u in Q1 and

all nodes w in Q2. This is doable in quadratic time, as

verified in the proof of Proposition 3.1.

(ii) Second, determine whether e |= e′ for all edges e in Q1

and all edges e′ in Q2. This runs in quadratic time, as

shown in the proof of Proposition 3.1.

(iii) Third, employ the algorithm for graph simulation in

[15] to compute the maximum relation S r from Q2 to

Q1. The algorithm [15] runs in quadratic time.

(iv) Finally, test whether the relation S r satisfies the condi-

tion (2) of the revised graph similarity. This can be done

in cubic time, following from (ii) above.

The correctness of the above algorithm is guaranteed by

Lemma 3.1, and in total it runs in cubic time. �

Remark. The equivalence problem for standard regular ex-

pressions is pspace-complete [41]. However, for the restricted
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regular expressions defined in Section 2, their equivalence

problem is much simpler: it is in linear time. The gap be-

tween the two complexity bounds justifies the choice of the

subclass F of regular expressions for RQs and PQs: those

regular expressions have sufficient expressive power to spec-

ify edge relationships commonly found in practice, and more-

over, allow efficient static analysis of fundamental properties.

3.2 Minimizing graph pattern queries

A problem closely related to query equivalence is query min-

imization. As remarked earlier, query minimization often

yields an effective optimization strategy. It has been studied

for, e.g., relational conjunctive queries [36] and XML tree pat-

tern queries [16,17,37]. For all the reasons that query mini-

mization is important for relational queries and XML queries,

we also need to study the minimization of graph queries.

For a PQ Q = (Vp, Ep), we define its size |Q| = |Vp|+ |Ep|,
a metric commonly used for pattern queries [37]. To simplify

the discussion, we assume Q is connected.

Minimization Given a PQ Q = (Vp, Ep, fv, fe), the

minimization problem is to find another PQ Qm =

(Vm
p , E

m
p , f m

v , f m
e ) such that (1) Qm ≡ Q, (2) |Qm| � |Q|, and

(3) no other such Q′ has size |Q′| < |Qm|. We refer to Qm as a

minimum equivalent PQ of Q.

Remark. (1) A PQ may have multiple minimum equivalent

PQs. Moreover, these PQs may not be isomorphic to each

other, although they have the same size. Figure 4 shows such

an example, where both Q2 and Q3 are minimum equivalent

PQs of Q1 and |Q2| = |Q3|, but they are not isomorphic.

(2) We ignore regular expressions in the minimization

analysis since for those in the particular subclass F used in

RQs and PQs, it takes linear time to minimize them. In ad-

dition, as will be seen from our algorithms in Section 5, mini-

mizing RQs has little impact on their complexity. This would

no longer be the case, however, if general regular expressions

were adopted. This further justifies the choice of F in the def-

inition of PQs.

The minimization problem for RQs is trivial for the reason

stated above. Below we focus on minimization of PQs. The

last main result of this section is as follows.

Theorem 3.2 Given any PQ Q, a minimum equivalent PQ
of Q can be computed in cubic time.

To prove Theorem 3.2, we develop an algorithm that, given

a pattern query Q as input, finds a minimum equivalent PQ
Qm of Q in cubic time.

To present the algorithm, we first introduce several notions

that the algorithm uses. Recall the revised graph similarity re-

lation S r defined in Section 3.1. We say that two nodes u,w

in Q are simulation equivalent if and only if (u,w) ∈ S r and

(w, u) ∈ S r. The equivalence relation S eq consists of all the

node pairs that are simulation equivalent. We denote the set of

equivalence classes induced by S eq as EQ, where each equiv-

alence class in EQ is a set of nodes that are pairwise simula-

tion equivalent.

Note that if u and v are simulation equivalent, then u � w

and w � u. Intuitively, this suggests that any two nodes in

the same equivalence class should be treated as a single node

for any queries. Based on this, the idea of minPQs is to (1)

identify these equivalent nodes, (2) construct an equivalent

query by “merging” these nodes into a single node, and (3)

remove redundant nodes and edges to construct a minimum

equivalent query.

The algorithm, referred to as minPQs, is outlined in Fig.

5. It has the following three steps. Given a PQ Q(Vp, Ep), (1)

minPQs first preprocesses Q by computing the maximum

revised graph similarity S r as well as the node equivalence

classes EQ based on S r; (2) by treating each equivalence

class in EQ as a single node, it determines the edges for all

these nodes, and constructs an equivalent, yet not necessarily

minimum query Qm for Q; (3) minPQs then identifies and

removes redundant edges and nodes from Qm, and returns it

as a minimum equivalent query. We next illustrate each step

as follows.

Fig. 4 Non-isomorphic equivalent minimum PQs
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Fig. 5 Algorithm minPQs

Step 1 : Computing S r and EQ (lines 1–2). As a prepro-

cessing step, minPQs first determines whether u � w for all

node pairs u,w in Q, and then determines whether e |= e′ for

all edge pairs e, e′ in Q. After that, the algorithm computes

the maximum revised similarity relation S r by employing an

algorithm for standard graph simulations, e.g., [15]. It next

identifies the nodes that are simulation equivalent, and com-

putes EQ accordingly.

Example 3.3 Consider the PQ Q1 shown in Fig. 6, where (a)

nodes B1 and B2 have the same predicate, (b) all those nodes

labeled with C (Ci, i ∈ [1, 5]) have the same predicate, and (c)

all those nodes with distinct labels (ignoring subscripts) have

different predicates. For brevity, we only explicitly annotate

the predicates of the nodes labeled with H and J. Given these,

algorithm minPQs works as follows.

(1) It first computes the maximum similarity S r on Q1,

which is {(R,R), (Bi1 , B j1), (Ci2 ,C j2), (D,D), (Hi3 ,H j3 ),

(Ji4 , J j4 )}, where 1 � i1, j1 � 2, 1 � i2, j2 � 5,

1 � i3 � j3 � 3, and 1 � i4 � j4 � 3.

(2) The set EQ of equivalence classes is derived from the

similarity relation S r. For Q1, EQ consists of eq0= {R},
eq1 = {B1, B2}, eq2 = {C1,C2,C3,C4,C5}, eq3 = {D},
eq4 = {H1}, eq5 = {H2}, eq6 = {H3}, eq7 = {J1},
eq8= {J2}, and eq9= {J3}.

Step 2 : Constructing an equivalent query Qm (lines 3–5).

Algorithm minPQs first constructs the nodes and edges of

Qm (line 3). For each equivalence class Eq ∈ EQ, minPQs
initializes a corresponding query node eq and constructs the

node set Vm
p for Qm. It then determines the edge set Em

p of Qm

as follows. For any two equivalence classes eq1 and eq2 in

EQ, let E(eq1, eq2) be the set of edges from the nodes in eq1

to the nodes in eq2, i.e., E(eq1, eq2) = {e | e = (u,w) ∈ Ep,

u ∈ eq1, w ∈ eq2}. If E(eq1, eq2) is nonempty, minPQs adds

an edge (eq1, eq2) to Em
p .

Algorithm minPQs then refines the pattern query Qm by

(a) removing redundant edges, and (b) making “copies” of

nodes in Vm
p to transform Qm from multigraph to a simple

graph (line 4). More specifically,

• Qm may contain redundant edges. We say an edge e

is redundant in E(eq1, eq2) if (1) there exists another

edge e′ in E(eq1, eq2) such that L( fe) = L( f ′e ), or (2)

there exist two other edges e1 and e2 in E(eq1, eq2)

such that L( fe1 ) ⊆ L( fe) ⊆ L( fe2 ). For each pair

eq1 and eq2, minPQs removes redundant edges from

E(eq1, eq2), and updates Em
p accordingly.

• Moreover, Qm may be a multigraph [42], i.e., there may

exist multiple edges (with different labels) between two

nodes in Qm. To construct Qm as a simple graph in

which each pair of nodes are connected by at most a

single edge, minPQs determines the number of copies

N(eq) for each nodes, which is defined to be the maxi-

mum number of non-redundant edges in E(eq′, eq) for

all eq′ ∈ EQ. Here eq′ and eq may refer to the same

edge. It then extends Vm
p by making N(eq) copies of

node eq.

After both Vm
p and Em

p are refined, algorithm minPQs pro-

ceeds to construct an equivalent query Qm(Vm
p , E

m
p , f m

v , f m
e ) as

follows (line 5).

1. For each eq in EQ, it includes into Vm
p a set C(eq) =

{eq1, . . . , eqN(eq)} of N(eq) nodes. For all nodes u in

C(eq) (eq ∈ EQ), it sets f m
v (u) = fv(w), where w ∈ eq.

2. Let E(eq1, eq2) be the set of non-redundant edges from

eq1 to eq2 in EQ. For each eqi
1 (i ∈ [1,N(eq1)]) in

C(eq1), it randomly chooses |E(eq1, eq2)| nodes from

C(eq2), and includes in Em
p a set of |E(eq′, eq)| edges

from eqi
1 to those nodes. For each new edge enew, it ran-

domly chooses a distinct edge e in E(eq′, eq), and sets

fenew = fe.

Example 3.4 Recall PQ Q1 in Fig. 6. Consider two equiva-

lence classes eq1 = {B1, B2} and eq2 = {C1,C2,C3,C4,C5} in

EQ, and let E(eq1, eq2) be the set of edges from the nodes in

eq1 to the nodes in eq2.

(1) There are a total of five edges in E(eq1, eq2), of which,

edge e = (B1,C2) with fe = h�2 is a redundant edge. To

see this, observe that there are two edges e1 = (B1,C1)

and e2 = (B1,C3), where fe1 = h�1, fe2 = h�3, and

thus, L( fe1 ) ⊆ L( fe) ⊆ L( fe2 ) (see Section 3.1). Algo-
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rithm minPQs thus removes e from Qm. Similarly, edge

(B1,C1) and (B2,C3) are removed, and eq1 and eq2 are

connected by two edges (B1,C3) and (B2,C4).

(2) The number N(eq1) of the copies of node eq1 in EQ is

determined by the maximum number of non-redundant

edges in E(eq1, eq2), which is 2. Similarly, N(eq2) is

2.

(3) After the non-redundant edges and the number of copies

for equivalence classes in EQ are determined, an equiv-

alent query Q2 for Q1 is constructed, as shown in Fig.

6, by connecting (copies of) equivalence classes with

non-redundant edges. �

Step 3 : Constructing a minimum Qm (lines 6–8). Algo-

rithm minPQs further removes redundant nodes and edges

for query Qm in this phase. (a) It first re-computes the maxi-

mum revised graph similarity relation S rq on Qm. (b) It then

removes redundant edges. We say that an edge e = (u, u′) in

Qm is redundant if there exist two edges e1 = (u1, u′1) and

e2 = (u2, u′2) in Qm such that (u, u1) ∈ S rq, (u2, u) ∈ S rq,

(u′, u′1) ∈ S rq, (u′2, u
′) ∈ S rq, e1 |= e, and e |= e2. Note that

here we use a different notion to identify redundant edges

from the one in step 2. All such redundant edges in Qm are

removed at this step (line 6). (c) We say node u in Qm is iso-

lated if there are no edges starting from or ending with the

node u in Qm. All isolated nodes in Qm are removed at this

step (line 7). Algorithm minPQs then returns Qm as a mini-

mum equivalent query of Q (line 8).

Example 3.5 Recall that query Q2 of Fig. 6 is an equivalent

query for Q1. To remove redundant edges from Q2, algorithm

minPQs first computes the maximum revised similarity S ′r
on Q2. It then identifies edge (D,H2) and (H2, J2) as redun-

dant edges. After these edges are removed, Q2 is updated to

be Q3 as shown in Fig. 6.

Algorithm minPQs then identifies isolated nodes in the

updated query Q3, which are nodes H2 and J2. These nodes

are then removed from Q3. After all the isolated nodes are

removed, the query Q3 becomes Q4 as shown in Fig. 6. The

algorithm then returns Q4 as a minimum equivalent query of

the query Q1. �

To complete the proof of Theorem 3.2, we next show the

correctness and complexity of algorithm minPQs.

Correctness It suffices to show that (I) Qm ≡ Q, and (II)

that Qm is minimum in size, i.e., there is no other equivalent

query Q′m smaller than Qm.

(I) We first show that Qm ≡ Q, by proving that operations

in the algorithm preserve the query equivalence.

(1) Qm ≡ Q after step 2 of minPQs (line 5). To see this,

we only need to show that Q � Qm and Qm � Q.

(a) We construct a relation S ′r from Vp of Q to Vm
p of Qm

as follows. Recall that each node vm ∈ Vm
p corresponds to a

set C(eq) = {eq1, . . . , eqN(eq)} of N(eq) copies of an equiva-

lence class eqin EQ. For each node u ∈ Q, S ′r = {u, equi} for

each equi ∈ C(eq), where u ∈ eq.

We show that S ′r is a revised similarity relation from Q to

Qm. Indeed, for any (u, equi) ∈ S ′r, (i) u � equi, since equi is

an equivalence class such that for each v ∈ equi, u � v and

v � u. (ii) For each edge e = (u,w) ∈ Ep, there is an edge

e′ = (equi, eqwi) ∈ Em
p , where (w, eqwi) ∈ S ′r and e′ |= e.

To see (ii), suppose that there exists an edge e for which no

other edge e′ satisfies the condition given in (ii). If such an

edge e′ originally exists for e, but is removed from Em
p as a

redundant edge, then there must exist at least e1 and e2 such

that L( fe1 ) ⊆ L( f ′e ) ⊆ L( fe2 ), where e1 serves as an edge that

satisfies the condition of (ii). This indicates that the removal

of redundant edges only reduce edge numbers, and preserves

the equivalence of the query. Given this, e′ does not exist be-

fore the removal of redundant edges. Thus, there must exist a

child w of u which does not belong to any equivalence class

eqwi, the child of all the equivalence classes u belongs to. As

Fig. 6 Example for minimizing graph pattern queries
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a consequence, S r is not the correct maximum revised simi-

lar revision, which contradicts the correctness of the standard

graph simulation algorithm [15]. (iii) Along the same lines,

one can verify that S ′r guarantees the condition (2) of the re-

vised similarity relation. Thus, S ′r is indeed a revised similar-

ity relation from Q to Qm, and Q � Qm.

(b) We construct S ′−1
r = {equi, u} for each (u, equi) ∈ S ′r.

As argued above, we can show that Qm � Q with S ′−1
r as the

maximum revised similarity relation.

From (a) and (b), it follows that Qm ≡ Q.

(2) Qm ≡ Q after step 3 of algorithm minPQs (line 8).

Starting from an equivalent query Qm, minPQs only removes

redundant edges and isolated nodes, while preserving query

equivalence. To see this, recall S ′r constructed in (1) above.

Let S ′′r = S ′r \{u, equ}, where equ is a node removed as an iso-

lated node. We show that Q�Qm with S ′′r as the revised sim-

ilarity relation. Observe that the removal of redundant edges

and isolated nodes still preserves query equivalence. To see

this, recall that algorithm minPQs recomputes a revised sim-

ilarity relation S rq over Qm. Suppose that a redundant edge e

= (equ, equ′ ) is removed from Qm. Then there exist two edges

e1 = (u1, u′1) and e2 = (u2, u′2) in Qm such that (u, u1) ∈ S rq,

(u2, u) ∈ S rq, (u′, u′1) ∈ S rq, (u′2, u
′) ∈ S rq, e1 |= e, and e |= e2.

This indicates that for any node uq ∈ Q, where (uq, u) ∈ S ′′r ,

there must exist a node u2 such that (uq, u2) ∈ S ′′r if u becomes

an isolated node that can no longer match uq. Moreover, S rq

is correctly computed via a standard graph simulation algo-

rithm [15]. Thus, Q � Qm.

We construct S ′′−1
r = {equi, u} for each (u, equi) ∈ S ′′r ,

which can be shown as the revised similarity relation from

Qm to Q. Thus Qm � Q. This shows that Qm ≡ Q.

From (1) and (2) it follows that Q ≡ Qm after minPQs
terminates. This completes the proof of (I).

(II) We now show that Qm is a minimum equivalent query

of Q. Consider a PQ Q = (Vp, Ep) and the equivalent query

Qm returned by algorithm minPQs.

Assume that there exists a PQ Q′ such that Q′ ≡ Qm and

|Q′| < |Qm|. We show that |Q′| = |Qm|, a contradiction. Let

EQm and EQ′ be the equivalence classes for Qm and Q′, com-

puted by algorithm minPQs, respectively. It suffices to show

the following, which indicates |Qm| = |Q′|: (1) Qm and Q′

have the same number of nodes, i.e., |EQm | = |EQ′|, and (2)

Qm and Q′ have the same number of edges. To prove this, we

only need to show that for each pair of equivalence classes

eq1 and eq2 in EQm, |Em(eq1, eq2)| = |E′( f (eq1), f (eq2))|,
where Em(eq1, eq2) is the set of edges from the nodes in eq1

to the nodes in eq2 in Qm; similarly for E′( f (eq1), f (eq2)).

(1) We first show |EQm| = |EQ′| by giving a bijective map-

ping f from EQm to EQ′. Since Qm ≡ Q′, we have that

Qm � Q′ and Q′ � Qm by Lemma 3.1. Let S r(Qm,Q′) and

S r(Q′,Qm) be the maximum revised graph simulation rela-

tions for Qm � Q′ and Q′ � Qm, respectively. We define the

mapping f ⊆ EQm×EQ′ such that (eq, eq′) ∈ f if and only if

there exist u ∈ eq and u′ ∈ eq′ such that (u, u′) ∈ S r(Qm,Q′)
and (u′, u) ∈ S r(Q′,Qm). We show that f is a bijection as

follows.

(a) We first show that f is a function from EQm to EQ′.
Assume by contradiction that there is an equivalence class

eqin EQm and two equivalence classes eq′1 and eq′2 in EQ′

such that (eq, eq′1) ∈ f and (eq, eq′2) ∈ f . One can see that

eq′1 = eq′2 as follows.

• Since (eq, eq′1) ∈ f , there exist u1 ∈ eq and w1 ∈
eq′1 such that (u1,w1) ∈ S r(Qm,Q′) and (w1, u1) ∈
S r(Q′,Qm).

• From (eq, eq′2) ∈ f it follows that there exists u2 ∈ eq
and w2 ∈ eq′2 such that (u2,w2) ∈ S r(Qm,Q′) and

(w2, u2) ∈ S r(Q′,Qm).

• By u1, u2 ∈ eq, we have that (u2,w1) ∈ S r(Qm,Q′) and

(u1,w2) ∈ S r(Qm,Q′).

• In light of (w1, u1) ∈ S r(Q′,Qm) and (u1,w2) ∈
S r(Qm,Q′), we have that w1 � w2.

• From (w2, u2) ∈ S r(Q′,Qm) and (u2,w2) ∈ S r(Qm,Q′)
it follows that w2 � w1.

From these we can derive that eq′1 = eq′2, since w1 and w2

are simulation equivalent. Hence f is a function.

(b) The function f is a bijection. Indeed, f is total since it is

induced by the revised similarity relation, which is total. We

next show that f is injective, i.e., for any two different nodes

eq1 and eq2 ∈ EQm, f (eq1) � f (eq2). Suppose that there are

two nodes eq1 and eq2 such that f (eq1) = f (eq2) = eq′u in

Q′. (i) For every child eq′1 of eq in Qm, there exist three edges

e1 = (eq1, eq′1), e2 = (eq2, eq′2) in Qm and e = (equ, eqv) in

Q′, such that (eq1, equ), (eq′1, eqv) ∈ S r(Qm,Q′), e1 |= e,

and (eq2, equ), (eq′2, eqv) ∈ S r(Q′,Qm), e |= e2, by Qm ≡ Q′.
Thus, (eq1, eq2) ∈ S r(Qm,Q′). (ii) Similarly, we can show

that (eq2, eq1) ∈ S r(Qm,Q′). This tells us that eq1 and eq2

are simulation equivalent. Since algorithm minPQs com-

putes the maximum revised similar relation over Q, eq1 and

eq2 should be in the same equivalence class. This contradicts

the assumption that eq1 � eq2. Thus, the function f is an

injective function.

(c) We finally show that the mapping f is surjective. This
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can be verified by proving that f − is a total and injective func-

tion, via a similar argument as (b).

Putting (a), (b), and (c) together, we have that f is a to-

tal, surjective and injective function. That is, f is a bijection

from the nodes of Qm to the nodes of Q′. Therefore, Q′ and

Qm have the same number of nodes.

(2) We show that for each pair of equivalence classes eq1

and eq2 in EQm, |Em(eq1, eq2)| = |E′( f (eq1), f (eq2))|. Con-

sider a pair (eq1, eq2) in EQm. Along the same lines as above,

we can construct a bijective mapping g from the edges in

Em(eq1, eq2) to the edges in E′( f (eq1), f (eq2)) such that

L( fe) = L( fg(e)) for each edge in Em(eq1, eq2).

From (1) and (2) above it follows that |Q′| = |Qm|. This

completes the prove of (II). The correctness of algorithm

minPQs follows from (I) and (II). �

Remark. The proof is inspired by the proof for minimizing

Kripke structures based on graph simulations [35]. It is shown

there that all minimum Kripke structures are isomorphic. For

graph pattern queries, however, two minimum queries may

not be isomorphic, as remarked earlier in Fig. 4. This makes

the techniques used in this proof different from those used in

the proof of [35].

Complexity We next show that algorithm minPQs indeed

runs in cubic time, by showing that each of its three steps,

i.e., preprocessing (lines 1–2), equivalent query construc-

tion (lines 3–5), and minimum equivalent query construction

(lines 6–8), can be done in cubic time.

Preprocessing (lines 1–2). The computation of the maximum

revised similarity S r is in cubic time, i.e., O(|Vp||Ep||L|) time

(line 1), via the graph simulation algorithm [15]. Here L is

the maximum length of the regular expression over query

edges. The node equivalence classes EQ can be computed

in O(|Vp|2) time [35]. More specifically, the computation of

S r and EQ requires checking (1) whether u � v for two

query nodes u and v, which is in quadratic time; and whether

L( fe1 ) ⊆ L( fe2 ) for two query edges e1 and e2, which is in

O(L) time. The total time of preprocessing phase is thus in

O(|Q|3).

Equivalent query construction (lines 3–5). The construction

of Vm
p and Em

p is in O(|Q|) time (line 3). The refinement of Vm
p

and Em
p is in cubic time (line 4). The construction of Qm is in

O(|Q|) time, as |Qm| � |Q| (line 5). More specifically, check-

ing redundant edges is in O(|Em
p |2|L|) time, and determining

the copy number of nodes in Qm is in O(|Em
p |) time. Thus, the

total time for constructing Qm is in O(|Q|3) time.

Minimum equivalent query construction (lines 6–8). It takes

O(|Vp||Ep||L|) time to re-compute the revised similarity rela-

tion S rq. Removing redundant edges in Qm take O(|Em
p |2|L|)

time. It takes O(|Vp|) time to remove isolated nodes. Thus,

this phase is in O(|Q|3) time.

Putting these together, minPQs is in O(|Q|3) time. �

From the correctness and complexity analyses of algorithm

minPQs, Theorem 3.2 immediately follows.

Observe that the complexity bounds of minimization, con-

tainment and equivalence are all in the sizes of queries, which

are typically much smaller than the sizes of data graphs in

practice.

4 Evaluating reachability queries

In this section, we present two methods to answer RQs.

One employs a matrix of shortest distances between nodes.

It is in quadratic time, the same as its counterpart for tradi-

tional reachability queries [3]. The other adopts bi-directional

breadth-first search (BFS), and utilizes an auxiliary cache to

maintain the most frequently asked items. It is used when

maintaining a distance matrix is infeasible for large data

graphs.

Consider an RQ Qr = (u1, u2, fu1 , fu2 , fe) and a data graph

G = (V, E, fA, fC). For two nodes v1, v2 in V , we want to deter-

mine whether vi matches ui (i∈ [1, 2]) and moreover, whether

there exists a path from v1 to v2 that matches fe (see Section

2).

RQ with a single edge color Below we start with a special

case when fe carries a single edge color, and then consider

the general case.

Matrix-based method. We use a 3-dimensional matrix M,

where 2 dimensions range over data graph nodes and 1 di-

mension is for edge colors. For two nodes v1, v2 in graph G,

M[v1][v2][c] (respectively M[v1][v2][_]) records the length of

the shortest path from v1 to v2 via edges of color c (respec-

tively arbitrary colors). Capitalizing on M, one can detect in

constant time whether v1 reaches v2 via a path satisfying the

constraint fe.

Assume that there are m distinct edge colors in G. The ma-

trix can be built in O((m+1)|V |2+ |V |(|V |+ |E|)) time by using

BFS [42]. Note that m is typically much smaller than |V |. The

matrix is pre-computed and shared by all queries. Leveraging

the matrix M, Qr can be answered in O(|V |2) time by inspect-

ing those nodes that satisfy the search conditions specified by

u1 and u2 in a query, using a nested loop.
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Bi-directional search. The space overhead O((m + 1)|V |2) of

the distance matrix, however, may hinder its applicability. To

cope with large graphs, we propose to maintain a distance

cache using hashmap as indices, which records the most fre-

quently asked items. If an entry for a node pair (v1, v2) and

a color c is not cached, it is computed at runtime and the

cache is updated with the least recently used (lru) replace-

ment strategy. To do this we adopt a bi-directional BFS at

runtime as follows. Two sets are maintained for v1 and v2, re-

spectively. Each set records the nodes that are reachable from

(respectively to) v1 (respectively v2) only via edges of color

c. We expand the smaller set at a time until either the two sets

intersect (i.e., the distance is the number of total expansions),

or they cannot be further expanded (i.e., unreachable). This

procedure runs in O(|V | + |E|) time. A similar technique is

used in [43], but it does not consider edge colors.

Compared with traditional BFS, the bi-directional search

strategy can significantly reduce the search space, especially

when edge colors are considered. For instance, in the data

graph G of Fig. 1, if a user asks whether there exists a path

from C2 to D1 satisfying the constraint fa+, we can immedi-

ately answer no since no incoming edge to D1 is labeled with

color fa.

RQ with multiple colors We next extend the two methods

to evaluate a general RQ Qr. Assume the number of edge

colors in fe is h.

Matrix-based method. We decompose Qr into h RQs: Qri =

(xi, yi, fxi , fyi , fei) (i ∈ [1, h]), where x1 = u1, yk = u2, and we

add y j = x j+1 ( j ∈ [1, h − 1]) as dummy nodes between u1

and u2. Here each fei (i ∈ [1, h]) carries a single edge color,

and a dummy node d bears no condition, i.e., for any node v

in G, v matches d. Using the procedure for answering single-

colored RQs, we evaluate Qri from h to 1; we then compose

these partial results to derive Qr(G). This is in O(h|V |2) time,

where h is typically small and can be omitted.

Example 4.1 Recall the RQ Q1 from Fig. 1 with edge con-

straint fe = fa�2fn. The query Q1 can be decomposed into

Q1,1 and Q1,2 by inserting a dummy node d between C and

B, where Q1,1 (respectively Q1,2) has an edge (C, d) (respec-

tively (d, B)) with edge constraint fa�2 (respectively fn).

When evaluating Q1,2 on the graph G of Fig. 1, we get

Q1,2(G) = {(C3, B1), (C3, B2)}, since M[C3][B1][fn] = 1

and M[C3][B2][fn] = 1. Similarly, by C3 ∼ d derived from

Q1,2(G), we get Q1,1(G) = {(C1,C3), (C2,C3)}. Combining

Q1,1(G) and Q1,2(G), we find Q1(G). �

Bi-directional search. When a distance matrix is not avail-

able, runtime search is used instead, for evaluating an RQ
Qr = (u1, u2, fu1 , fu2 , fe). The bi-directional search method

can handle the regular expression fe, without decomposing

it. Intuitively, this can be done by evaluating fe by iteratively

expanding from (respectively to) the nodes that may match

u1 (respectively u2). In each iteration, the candidate match

set with a smaller size will be expanded, and fe is partially

evaluated. When fe is fully evaluated, we examine the inter-

section of the two sets to derive the result. This takes, how-

ever, O(h|V |2(|V | + |E|)) time. Nonetheless, as will be seen in

Section 6, this method is able to process queries on large data

graphs, when maintaining a distance matrix for those graphs

is beyond reach in practice.

It should be remarked that although existing (index-based)

solutions for traditional reachability queries cannot answer

RQs studied in this paper, they can be leveraged as filters,

i.e., we invoke our methods only after those techniques de-

cide that two nodes are connected (possibly constrained by a

set of labels).

5 Algorithms for graph pattern queries

We next provide two algorithms to evaluate PQs. Given a

data graph G = (V, E, fA, fC) (simply written as (V, E)) and

a PQ Qp = (Vp, Ep, fv, fe) (written as (Vp, Ep)), the two al-

gorithms compute the result Qp(G) of Q on G, in cubic time

in the size of G. The first algorithm is based on join oper-

ations. The other is based on split, an operation commonly

used in verifications of labeled transition systems (LTS, see,

e.g., [44]).

5.1 Join-based algorithm

We start with the join-based algorithm. It first computes, for

each node u in the PQ Qp, an initial set of (possible) matches,

i.e., nodes that satisfy the search conditions specified by u.

It then computes Qp(G) as follows. (1) If Qp is a directed

acyclic graph (DAG), the query result is derived by a re-

versed topological order (bottom-up) process, which refines

the match set of each query node by joining with the match

sets of all its children, and by enforcing the constraints im-

posed by the corresponding query edges. (2) If Qp is not a

DAG, we first compute the strongly connected components

(SCC) graph of Qp, a dag in which each node represents an

SCC in Qp. Then for all the query nodes within each SCC,

their match sets are repeatedly refined with the join opera-

tions as above, until the fixpoint of the match set for each
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query node is reached.

Algorithm The algorithm, referred to as JoinMatch, is

shown in Fig. 7. Besides Qp and G, it also takes a boolean

flag as input, indicating whether one opts to use a distance

matrix. Depending on the flag, the algorithm determines with

which of the methods from Section 4 to evaluate the RQs
embedded in Qp.

Fig. 7 Algorithm JoinMatch

The algorithm uses the following notations. We use u, v to

denote nodes in the query Qp, and x, y, z for nodes in the data

graph G. (1) For each node u in Qp, we initialize its match

set mat(u) = {x |x ∈ V and x ∼ u} (recall “∼” from Section

2). (2) For each edge e = (u′, u) in Qp, we use a set rmv(e) to

record the nodes in G that cannot match u′ w.r.t. edge e. (3)

An SCC graph of Qp = (Vp, Ep) is denoted as Qs = (Vs, Es),

where Cs ∈ Vs presents an SCC in Qp, and (C′s,Cs) ∈ Es if

there exists v′ ∈ C′s, v ∈ Cs such that (v′, v) ∈ Ep.

Algorithm JoinMatch first checks the flag. If one wants to

use a distance matrix M but it is not yet available, M is com-

puted and Qp is normalized as Q′p (line 2), by decomposing

each RQ of Qp into simple RQs (i.e., each edge only carries

one color) via inserting dummy nodes. Otherwise no normal-

ization is performed (line 1). The sets mat() and rmv() are

then initialized (lines 3–4). The SCC graph Qs of Q′p is then

computed, by using Tarjan’s algorithm [45] (line 5).

In a reversed topological order, JoinMatch processes each

node Cs of Qs as follows: the match set of each query node

in Cs is recursively refined until the fixpoint is reached (lines

7–14). For each node u in Cs and each edge e = (u′, u) (line

8), it computes the nodes in mat(u′) that fail to satisfy the

constraints of e, by invoking a procedure Join. The nodes re-

turned by Join are maintained in rmv(e) (line 9), which is

then used to refine mat(u′) (line 10). If the match set of any

query node is empty, an empty result is returned (line 11) and

the algorithm terminates. Otherwise, the rmv() sets of edges

(u′′, u′) are checked for possible expansion due to nodes that

cannot match u′ (lines 12–13). The query result is finally col-

lected (lines 15–16) and returned (line 17).

Procedure Join identifies nodes in mat(u′) that do not sat-

isfy the edge constraint imposed by e = (u′, u) or the match

set mat(u). It examines each node x′ in mat(u′) (line 2). If

there exists no node x in mat(u) such that (x′, x) matches the

regular expression fe(u′, u) (line 3), x′ is pruned from mat(u′)
and is recorded in premv(e) (line 4). The algorithm returns

premv(e) (line 5). Note that if a distance matrix is used (when

flag is true), one can check (x′, x) ≈ fe(e) (line 3) in constant

time, for any edge color and wildcard. Otherwise we use bi-

directional search to check the condition (Section 4).

Note that we provide the following options to handle reg-

ular expressions. (1) If a distance matrix M is available, a

regular expression is decomposed into a set of simpler regu-

lar expressions, each containing a single color, to make use

of matrix M. (2) Otherwise, the regular expressions are eval-

uated straightforwardly using bi-directional search (see Sec-

tion 4).

Example 5.1 Recall the pattern query Q2 and the data graph

G from Fig. 1. We show how JoinMatch evaluates Q2 on G.

For each node u in Q2, the initial and final match sets are as

follows.

node initial mat() final mat()

B {B1, B2} {B1, B2}
C {C1,C2,C3} {C3}
D {D1} {D1}

In a reversed topological order (lines 6–14), JoinMatch re-

peatedly removes from mat() those nodes that do not make

a match, by using premv() from procedure Join. There are

two SCC’s: SCC1 and SCC2, consisting of nodes {D} and
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{B,C}, respectively. JoinMatch starts from node D and pro-

cesses edge (C,D). The node C1 is removed from mat(C),

since it cannot reach D1 within two hops colored fa, followed

by edges within two hops colored sa. When processing the

edge (B,D), no nodes in mat(B) can be pruned. In SCC2,

the match sets mat(B) and mat(C) are refined by recursively

using the edges (B,C), (C, B) and (C,C), and C2 is removed

from mat(C) as C2 cannot reach any node in mat(B) with 1

hop colored fn. The same result Q2(G) is found as illustrated

in Example 2.3. �

We show the correctness and complexity analysis for Join-
Match as follows.

Correctness We show that the algorithm JoinMatch cor-

rectly returns Qp(G). (1) It always terminates. Indeed, for

each node u′ in Qp, the set mat(u′) decreases monotonically.

(2) We show that after the for loop (lines 6–14), each node

recorded in mat(u′) is a match of node u′. Denote the set of

matches of u as matt(u′). We only need to show that for each

node u′, mat(u′) = matt(u′) after the for loop.

We first show that JoinMatch preserves the invariant that

at any iteration of the for loop, for any node u′, matt(u′) ⊆
mat(u′). We show this by induction on the iteration of the

loop. (a) matt(u′) ⊆ mat(u′) at the beginning of the loop. (b)

Assume that matt(u′) ⊆ mat(u′)i at iteration i of the loop.

At iteration i + 1, the set rmv(e) is computed (line 9), where

for each node v′ ∈ rmv(e), there is no path satisfying the

constraints of e, i.e., it is not a match of u′. The match set

mat(u′)i is refined to mat(u′)i+1 by removing all these nodes

that cannot match u′. Thus, matt(u′) ⊆ mat(u′)i+1.

The argument above shows that JoinMatch only removes

nodes that cannot match u′ from mat(u′). We next show that

after the loop, mat(u′) = matt(u′). Suppose that there exists

a node v′ ∈ mat(u′) that cannot match u′ after the loop. That

is, there is an edge e = (u′, u) such that v′ cannot satisfy the

constraints of e. Observe that rmv(e) contains at least one

such node v′ after procedure Join (line 9 and line 13). This

violates the termination condition of the loop (line 14), and

v is to be removed from mat(u′) at some iteration (line 10).

Thus, mat(u′) = matt(u′) after the loop, for each node u′ in

Qp. Putting these together, one can verify that JoinMatch
correctly computes the matches Qp(G).

Complexity We analyze the complexity based on the case

that the distance matrix is used. The algorithm consists of

two phases: pre-processing (lines 1–5) and match computa-

tion (lines 6–17).

Preprocessing (lines 1–5). This step takes O((m + 1)|V |2 +
|V |(|V |+ |E|)) time to normalize Qp and compute the distance

matrix, each for a single color, where m is the number of

distinct edge colors, typically a small number in real-life ap-

plications (lines 1–2). The initialization of mat(u) and rmv(e)

for each node u and edge e in Q′p takes in total O(|V ||V ′p|+|E′p|)
time (lines 3–4). It takes linear time O(|V ′p| + |E′p|) to com-

pute Qs (line 5) [45]. Thus, the preprocessing phase takes

O((m + 1)|V |2 + |V |(|V | + |E|) + |V ||V ′p| + (|V ′p| + |E′p|)) time in

total.

Match computation (lines 6–17). The for loop (lines 6–16)

is repeated O(|E′p|) times. For each edge e in E′p, proce-

dure Join takes O(|V |2) time (line 9). It takes O(|V |) time to

update mat(u) (line 10), rmv(e) (line 9) and rmv(e′) (line

13), respectively. Putting these together, the for loop is in

O(|E′p||V |2) time. It takes O(|E′p||V |) time to collect the result

Qp(G). Thus, the match computation is in total O(|E′p||V |2)

time.

Putting these together, the algorithm is in O(|V ||E| +
|E′p||V |2) time. Notably, |E′p| and |V ′p| are bounded by O(m|Ep|)
and O(Vp + (m − 1)|Ep|), respectively.

Remark. Observe the following. (1) The distance matrix can

be computed in O((m + 1)|V |2 + |V |(|V | + |E|)) time (line 2).

The initialization of mat(u) is in O(|V ||V ′p|) time. The normal-

ization and SCC graph are both bounded by O(|V ′p| + |E′p|).
(2) Clearly, if Qp is a dag, the loop takes a single bottom-up

sweep for each node in Qp, which naturally takes O(|E′p||V |2)

time. Otherwise, an auxiliary structure is maintained for

each node, recording its descendants removed from possible

matches, to avoid redundant check in the iterations of the loop

(lines 7–14). In this way, the loop is bounded by O(|E′p||V |2)

for PQs that are general graphs.

5.2 Split-based algorithm

We next present the split-based algorithm. It treats query

nodes and data graph nodes uniformly, grouped into

“blocks”, such that each block B contains a set of nodes in

V∪Vp from a data graph G = (V, E) and a PQ Qp = (Vp, Ep).

The algorithm creates a block for each query node u, denoted

as B(u), initialized with all nodes x ∈ V such that x ∼ ui. It

then computes a partition-relation pair 〈par, rel〉, where par
is set of blocks and rel is a partial order over par. The pair

〈par, rel〉 is recursively refined by splitting the blocks in par
and rel based on the constraints imposed by query edges. The

process proceeds until a fixpoint is reached, and then the re-

sult of Qp is collected from the corresponding blocks of query
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nodes in Vp, and the partial order over the blocks in rel.
The idea of split was first explored in LTS verification [44],

which deals with a single graph. Our algorithm extends the

idea to handle two graphs.

Algorithm The algorithm, referred to as SplitMatch, is

shown in Fig. 8. It also needs the procedures mat() and rmv()

used by JoinMatch.

Fig. 8 Algorithm SplitMatch

The algorithm first checks flag, and accordingly normal-

izes the query Qp and computes the distance matrix if needed

(lines 1–3), along the same lines as JoinMatch. It then initial-

izes the match set and block set of each query node (line 5).

In addition, it constructs the partition-relation pair 〈par, rel〉
(line 6); it also initializes rmv() for each query edge (line

7), a step similar to its counterpart in JoinMatch. It then

iteratively selects and processes those query edges with a

nonempty rmv() set, i.e., edges for which the match set can

be refined (lines 8–14). The set of blocks par is split based

on rmv(e) in procedure Split, and rel is updated accordingly

(line 10). SplitMatch further extends the rmv() sets of edges

e′(u′′, u′) by checking if any node in mat(u′′) has no descen-

dants satisfying the constraints of e′ (lines 12–14). The ex-

tended rmv(e′) is used to further refine par.
The process (lines 8–14) iterates until par can no longer be

split. The result is collected (line 16) and returned (line 18).

SplitMatch terminates and returns an empty set, if the match

set of any query edge is empty (line 17).

Procedure Split refines the pair 〈par, rel〉 when given a set

of nodes SpltN ⊆ V . Each block B ∈ par is replaced by two

blocks B1 = B ∩ SpltN and B2 = B \ SpltN (line 2). Since B
is split and new blocks are generated, par and rel are updated

correspondingly (lines 3–4), and the refined pair 〈par, rel〉 is

returned (line 5).

Example 5.2 We show how SplitMatch evaluates the PQ
Q2 on the graph G of Fig. 1. For each node u in Q2, Split-
Match initializes par, the set of blocks (Blks) as shown in

the table below, together with the relation rel on the blocks.

We also show the rmv() set of each edge, with empty rmv()

omitted.

initial par initial rel edge rmv() sets

Blk1: {B, B1, B2} {Blk1,Blk1} (C, B) {C1,C2}
Blk2: {C,C1 ,C2 ,C3} {Blk2,Blk2}
Blk3: {D,D1} {Blk3,Blk3}

After the process of SplitMatch, the final par and rel are

shown in the following table. All the rmv() sets for query

edges are ∅. One can verify that during the while loop (lines

8–14), the block set of node C is refined by making use of

rmv(C, B), resulting in a new block set from which nodes C1

and C2 are absent; similarly for the other blocks.

final par final rel

Blk1 : {B,B1, B2} {Blk1,Blk1}
Blk2 : {C,C3} {Blk2,Blk2}
Blk4 : {C1,C2} {Blk4,Blk2}, {Blk4,Blk4}
Blk3 : {D,D1} {Blk3,Blk3}

Algorithm SplitMatch identifies the same result as re-

ported in Example 2.3. �

We next give the correctness and complexity analyses for

algorithm SplitMatch as follows.

Correctness The algorithm returns Qp(G), since (1) all

blocks are initialized with query nodes and all their possible

matches; (2) the loop (lines 8–14) only drops those nodes that

fail to match query nodes constrained by the query edges; (3)

each graph node remaining in a block is a match to the corre-

sponding query node, i.e., satisfying all the edge constraints;
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and (4) each block decreases monotonically. We provide de-

tails below.

We first introduce notations we shall use in the analysis. (a)

Given a set of blocks Bs and a query edge e with fe(e) = ck,

we define prev(Bs) as the set of blocks in G, such that for

each block B ∈ prev(Bs) and each node u ∈ B, there ex-

ists a node v in a block of Bs, where (i) there is a short-

est path from u to v with all edges e′ in the path satisfying

fC(e′) = c, and (ii) the path has length bounded by k. (b) We

say that partition-relation pair 〈par, rel〉 over-approximates S

if for any edge e = (u′, u) ∈ Eq with fe(e) = ck, rel(B(u′)) ⊆
∪prev(e, rel(B(u))).

Using these notations, we next show that SplitMatch
maintains an invariant, namely, at any time, 〈par, rel〉 over-

approximates S . We verify this by induction on the iteration

of the while loop (lines 8–14) as follows. (1) The invariant is

preserved when 〈par, rel〉 is initialized (line 6). (2) Suppose

that at iteration i the invariant is maintained by 〈pari, reli〉. At

iteration i+1, (a) pari is split based on a non-empty set rmv(e)

for edge e ∈ Ep, and reli is updated according to newly gen-

erated blocks from pari (line 11). Recall that for an edge e

= (u, v), where fe(e) = ck, rmv(e) represents the set of nodes

which fail to satisfy the constraints of e. SplitMatch only re-

moves such nodes as a block from an existing block in pari,

which preserves the invariant. Thus, SplitMatch maintains

the invariant.

We finally show that the induced relation S (lines 15–16) is

the query result when the while loop terminates (lines 8–14).

Observe that when SplitMatch terminates, for every edge e

= (u, v), the set rel(B(u)) contains the desirable blocks, each

of them (a) contains a set of nodes satisfying the constraint

of edge e, guaranteed by the invariant, and (b) can no longer

be further partitioned by rmv(e′) of any other edge e′, i.e.,

it contains no node that is not a match, since all rmv(e′) is

empty for any edge e (line 8). The union of these blocks is

thus exactly the match set of u. From these it follows that

SplitMatch correctly computes the query result.

Complexity The complexity analysis below is based on the

assumption that SplitMatch uses the distance matrix as in-

dex. The algorithm consists of three phases: pre-processing

(lines 1–7), match computation (lines 8–14), and result col-

lection (lines 15–18). We give their complexity bounds as fol-

lows.

Pre-processing (lines 1–7). The pre-processing phase is in

O((m + 1)|V |2 + |V |(|V | + |E|) + |V ′p||V | + |E′p||V |2) time, simi-

larly to its counterpart in JoinMatch, where m is the number

of distinct edge colors.

Match computation (lines 8–14). We denote the initial par at

line 6 as parin, and the final refined par as parout. For match

computation process (lines 8–14), observe that (1) at each it-

eration i, each pari is a refinement of pari−1 at iteration i − 1,

(2) rmv(e)i and rmv(e)i−1 are disjoint, and (3) the total num-

ber of newly generated blocks at line 10 is 2(|parout|− |parin|).
As a result, the overall time complexity of the code at line

10 is O(|Ep||parout |). The time complexity for the inner for
loop at line 11 is O(|parout ||V |2), with the maintenance of a

2-D matrix along the same line in JoinMatch for each edge

e(u′, u) ∈ Ep and mat(u′). The Split procedure is in O(|V |)
time, thus the total time at line 8 is O(|parout||V |). Putting

these together, the total time in the second phase (lines 8–14)

is in O(|parout||V |2).

Result collection (lines 15–18). There are a total of |Ep| edges,

and for each edge e = (u, v), there are at most |V | matches

for u and v, respectively. Thus, the result collection is in

O(|Ep||V |) time.

Remark. The set parout represents the finally refined par,
which is bounded by O(|V ||V ′p|). A closer observation of the

complexity of SplitMatch tells us that |parout| is between |V ′p|
and |V ′p||V |, i.e., the algorithm is in O(|V ′p||V |3) time. How-

ever, suppose that a block B(u) is split (line 8) into B1 (con-

tains u) and B2 (without u). It is unnecessary to find matches

for B2. Thus, one can verify that SplitMatch has a compa-

rable worst case complexity to |E′p||V2|, measured with input

size. Moreover, the same auxiliary structure used in algorithm

JoinMatch is adopted here, to ensure that the loop (lines 6–

14) runs in O(|parout||V |2) time for a cyclic query.

6 Experimental evaluation

In this section we present an experimental study using both

real-life data and synthetic data. Four sets of experiments

were conducted, to evaluate: (1) the effectiveness of PQs,

compared with a subgraph isomorphism algorithm SubIso
[46] and a simulation based pattern matching algorithm

Match [34]; (2) the effectiveness of minimization as an opti-

mization strategy; (3) the efficiency of RQ evaluation; and

(4) the efficiency and scalability of the algorithms Join-
Match and SplitMatch, employing distance matrix and dis-

tance cache as indices.

Experimental setting We used real-life data to evaluate the

performance of our methods in the real world applications,
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and synthetic data to vary graph characteristics, for an in-

depth analysis.

(1) Real-life data. We used two sets of real-life data. (a)

We used YouTube dataset1) , in which each node de-

notes a video with attributes such as uploader id (uid),

category (cat), length (len), comment number (com)

and age (the number of days since uploaded); edges

between videos represent relationships such as recom-

mendations of friends fc (respectively reference fr) from

earlier (respectively later) videos to later (respectively

earlier) related videos, while their uploaders are friends;

edge relationships also include recommendations of

strangers sc and references sr defined similarly. The

dataset has 8 350 nodes and 30 391 edges. (b) We gen-

erated a terrorist organization collaboration network,

from 81800 worldwide terrorist attack events in the

last 40 years recorded in Global Terrorism Database2)

[19], where each node represents a terrorist organiza-

tion (TOs) with attributes such as name (gn), country,

target type (tt), and attack type (at); and edges bear

relationships, e.g., international (respectively domestic)

collaborations ic (respectively dc), from organizations

to the ones they assisted or collaborated in the same

country (respectively different countries). The network

has 818 nodes and 1 600 edges.

(2) Query generator. We designed a query generator to pro-

duce meaningful PQs. The generator has five parame-

ters: |Vp| denotes the number of pattern nodes, |Ep| is
the number of pattern edges, |pred| denotes the number

of predicates each pattern node carries, and bounds b

and c are used such that each edge is constrained by a

regular expression e�b
1 · · · e�b

k , with 1 � k � c. An RQ
is a special case of a PQ with two nodes and one edge.

(3) Synthetic data. We implemented a generator to produce

data graphs, controlled by 4 parameters: the number of

nodes |V |, the number of edges |E|, the average number

of attributes of a node, and a set of edge colors that an

edge may carry.

(4) Implementation. We have implemented the follow-

ing, all in Java: (a) the bi-directional search based

method (biBFS) for RQs, with a distance cache em-

ploying hashmap to index frequently asked items; (b)

JoinMatch and SplitMatch with distance matrix as in-

dices, denoted as JoinMatchM and SplitMatchM, re-

spectively; (c) JoinMatch and SplitMatch using dis-

tance cache, denoted as JoinMatchC and SplitMatchC,

respectively; (d) SubIso, a subgraph isomorphism al-

gorithm [46]; and (e) Match, a simulation based pattern

matching algorithm developed in [34].

All experiments were run on a machine with an AMD

Athlon 64×2 Dual Core 2.30GHz CPU and 4GB of memory,

and its operating system was Scientific Linux. For each ex-

periment, 20 patterns were generated and tested. The average

is reported here.

Experimental results We next present our findings.

Exp-1: Effectiveness of PQs In the first set of experi-

ments, we evaluated the effectiveness of PQs. In contrast to

SubIso and Match, we show that PQs can identify mean-

ingful matches in real-life data. For quantitative comparison,

the F-Measure [47] is adopted, which is defined as follows:

F-Measure= 2 ·(recall · precision) / (recall + precision)
recall = #true_matches_found / #true_matches
precision = #true_matches_found / #matches

Here #matches is defined as the number of distinct node

pairs (u, v), where u is a query node and v is a graph node

that matches u. The #true_matches is the number of mean-

ingful results, i.e., matches satisfying constraints on nodes

and edges.

Figure 9(a) depicts two real-life PQs Q1 and Q2. Query Q1

is to find the videos A in the category “Film & Animation”,

which have more than 20 comments and were uploaded at

least 300 days ago. Videos A are related to videos B uploaded

by “Davedays” via friends, references (fr) or friends, rec-

ommendations (fc), which in turn are related to videos C via

constraint sr�6fr. Moreover, B and C both reference videos

D, which are viewed over 160K times and have less than

300 comments. Similarly, query Q2 poses a request on a ter-

rorist network searching for TOs related with a specified TO

“Hamas” via various relations, e.g., ic�2dc+ic�2.

Partial results of Q1 and Q2 are drawn in Fig. 9(a). Inter-

estingly, the result of Q2 reflects some (indirect) connections

from different TOs to the Hamas TO in the middle east. Exist-

ing approaches, e.g., SubIso and Match, are not expressive

enough to specify such queries. For a fair comparison, we al-

low different edge colors in a data graph but restrict the color

constrained by a query edge of 1, to favor SubIso and Match.

1) http://netsg.cs.sfu.ca/youtubedata/
2) http://www.start.umd.edu/gtd/
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Fig. 9 Exp-1: Effectiveness of PQs. (a) Real-life result of PQs: Youtube and Terrorist Organization; (b) Effectiveness comparison; (c) Efficiency
comparison

Figure 9(b) shows the F-Measure values of different ap-

proaches for various such queries. The pair (|Vp|, |Ep|) in the

x-axis denotes the number of nodes |Vp| and edges |Ep| in

a query. The y-axis represents the F-Measure values. The

number of predicates at each query node is 2 or 3. The re-

sult shows the following, (1) PQs consistently find meaning-

ful matches, as expected; (2) SubIso has low F-Measure,

e.g., SubIso found 33 true matches among 245 when the

x-value is (3, 3). This is mainly due to its low recalls. For

the other queries, SubIso cannot find any match. Its preci-

sion is always 1 if some matches can be identified. (3) The

F-Measure of Match is better than that of SubIso, since

its recall is high, i.e., it can identify all true matches. How-

ever, its precision is relatively low, e.g., of the 374 matches

found by Match when the x-value is (3, 3), only 245 are true

matches.

Figure 9(c) reports the elapsed time of all the algo-

rithms, using Terrorism data. The matrix-based methods were

employed, i.e., SplitMatchM, JoinMatchM and MatchM.

It shows that JoinMatchM and SplitMatchM outperform

MatchM, and are much faster than SubIso.

The results above tell us that PQs are not only more effec-

tive, but are also more efficient than their conventional coun-

terparts, i.e., SubIso and Match.

Exp-2: The effectiveness of PQ minimization We evalu-

ated the effectiveness of the minimization algorithm minPQs
(Section 3), using YouTube data. The queries were generated

by varying |Vp| and |Ep|. The average number of predicates

|pred| is 3. The bound c is between 2 and 4, and b is 5, i.e.,

each edge is constrained by a regular expression c�5
1 · · · c�5

k ,

where 2 � k � 4. The results are reported in Fig. 10(a).

In Fig. 10(a), the x-axis is the same as its counterparts in

Fig. 9(b), and the y-axis represents the elapsed time for query

evaluation. We only show the results of using JoinMatchM,

since the others reflect similar trends and are thus omitted.

The minimization process was performed instantly. The re-

sults tell us the following: (1) minPQs can reduce the size of

queries by removing redundant nodes and edges from a query,

and thus speed up the query evaluation; and (2) in general,
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Fig. 10 Exp-2: PQs minimization and Exp-3: efficiency of RQ. (a) Query minimization; (b) RQs over Youtube

the larger the queries are, the more the performance can be

improved. This is because larger queries have a higher prob-

ability to contain redundant nodes and edges. Indeed, it took

18 seconds to handle queries with 12 nodes and 18 edges,

while after minimization, the running time was cut by over a

half since the minimized queries have seven nodes and nine

edges in average.

This set of experiments verifies that the minimization al-

gorithm can effectively optimize PQs. In the rest of our ex-

periments, all tested queries were minimized.

Exp-3: Efficiency of RQs In this set of experiment, we

tested the efficiency of the two algorithms presented in Sec-

tion 4 for evaluating reachability queries RQs. Fixing the

bound b at 5 and the cardinality of node predicates at 3, we

varied the number of colors c from 1 to 4 per edge. More

specifically, the tested regular expressions have the form

c1
�b · · · ci

�b for i ∈ [1, 4].

Figure 10(b) shows the average elapsed time of evaluat-

ing RQs on YouTube data. The x-axis represents the number

of distinct colors and y-axis indicates the elapsed time. The

term DM means the method employing distance matrix. The

results tell us the following.

(1) The method based on distance matrix is most efficient,

and biBFS is more efficient than BFS, as expected.

(2) biBFS scales better than BFS with the number of col-

ors, since by searching from two directions, biBFS pro-

duces less intermediate nodes than BFS. The trend of

the curves of biBFS and BFS indicates that biBFS
works better for more complex regular expressions.

(3) As will be seen shortly, maintaining distance matrix is

expensive for large graphs. Hence biBFS makes a ra-

tional solution on large graphs, by striking the balance

between time and space.

Exp-4: Efficiency of PQs on YouTube In this set of ex-

periments we evaluated the performance of JoinMatch and

SplitMatch over synthetic and real life graphs.

Figures 11(a)–(d) depict the elapsed time when varying

one of the parameters: |Vp|, |Ep|, |pred| and b, respectively.

See Fig. 10(b) for the tests for varying c. The M-index repre-

sents the time of computing a distance matrix, which is shared

by all patterns and thus is not counted in JoinMatchM and

SplitMatchM. The result tells us the following.

(1) Figure 11(a) shows that the matrix-based algorithm

JoinMatchM (respectively SplitMatchM) outperforms

the distance-cache based algorithm JoinMatchC (re-

spectively SplitMatchC). This is because JoinMatchM

and SplitMatchM use the distance matrix as an index,

which returns node distance in constant time, while

JoinMatchC and SplitMatchC are based on distance

cache: if the distance of two nodes is not cached, it

needs to be recomputed from scratch.

(2) The join-based methods outperform the split-based

methods. As shown in the figures with various pa-

rameters, in most cases JoinMatchM is the fastest,

followed by SplitMatchM; JoinMatchC outperforms

SplitMatchC. This indicates that the computational cost

of the join-based method is reduced by adopting re-

versed topological order (see Section 5).

(3) The elapsed time is more sensitive to the number of

pattern edges (see Fig. 11(b)) than the number of pat-

tern nodes (see Fig. 11(a)), since the number of pattern

edges dominates the number of joins or splits to be con-

ducted. Moreover, the elapsed time is sensitive to the

number of predicates (see Fig. 11(c)) since predicates

impose a strong constraint on initializing the match set.

The more predicates, the less graph nodes satisfy them,

resulting in a smaller number of candidate matches

and faster evaluation. Time is sensitive to the bound

(see Fig. 11(d)) since the number of matches gets larger



334 Front. Comput. Sci., 2012, 6(3): 313–338

Fig. 11 Exp-4: Efficiency of PQs (Youtube). (a) Varying |Vp | on YouTube; (b) Varying |Ep | on it YouTube; (c) Varying |pred| on YouTube;
(d) Varying b on YouTube

when b is increased.

(4) These results demonstrate that all algorithms have good

scalability and they work well when the numbers of

|Vp|, |Ep|, |pred|, and b become much larger.

(5) We can see that M-index can be computed efficiently,

and it may significantly improve the performance, when

the dataset is relatively small.

As a supplement, we verified the proposed algorithms us-

ing synthetic data. We first varied both the number of graph

nodes and edges using synthetic data, in order to test the scal-

ability. The results are shown in Figs. 12(a) and 12(b), respec-

tively. The five parameters: |Vp|, |Ep|, c, |pred|, and b are 6,

8, 4, 3, and 5, respectively. We find that all algorithms scale

well with the increasing number of graph nodes (Fig. 12(a)),

and the number of graph edges (Fig. 12(b)). Furthermore, for

synthetic data graphs with 8K nodes and four distinct colors,

the distance matrix consumes 512MB memory, when using

an unsigned short integer to store a matrix cell; for a data

graph with 16K nodes and four distinct colors, it takes 2GB

memory. This shows that a matrix is too large to be applicable

to large graphs, and runtime techniques should be employed

in such cases.

Figures 12(c), 12(d), and 12(e) confirm the previous obser-

vations in their real life counterparts (Fig. 11(a), 11(b), 11(c),

respectively). The results tell us the following. (1) All algo-

rithms are not very sensitive to the number of query nodes

(Fig. 12(c)). (2) All algorithms scale well with the increasing

number of query edges (see Fig. 12(d)). (3) All algorithms are

sensitive to the increasing number of predicates over queries

(Fig. 12(e)). Note that the results show that it takes a longer

time to compute the distance matrix, which hinders its appli-

cability to larger data graphs.

In addition, we compared the efficiency and scalability of

SubIso and SplitMatchC by using a set of small data graphs.

We generated queries with eight nodes and 15 edges, where

each node has three predicates, and each edge is associated

with a regular expression in the form of c5
1c5

2c5
3c5

4. We then

tested SubIso and SplitMatchC over the patterns by varying

the number of data graph nodes and edges. To favor SubIso,

we counted the number of matches as the number of distinct

node pairs (u, x), where u is a query node, and x is a match of

u in the data graph. The result tells us that while the number

of matches found by SubIso is far less than the number found
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Fig. 12 Exp-4: Efficiency of PQs (synthetic graphs). (a) Synthetic G(|V |, 20k); (b) Synthetic G(8k, |E|); (c) Varying |Vp |; (d) Varying |Ep |; (e)
Varying |pred|); (f) Synthetic G(|V |, |E|)

by SplitMatchC, SubIso took around 700 seconds, even for

the data graph of 200 nodes and 250 edges. In contrast, it took

SplitMatchC less than 1 second to identify all the meaningful

matches. Moreover, SubIso is more sensitive to the change

of the size of data graph than SplitMatchC.

Summary From the experimental results we find the fol-

lowing. (1) Graph pattern queries (PQs) are able to identify

far more sensible matches in emerging application than those

found by the conventional approaches. (2) The minimiza-

tion algorithm can effectively identify and remove redundant

nodes and edges, and thus can improve performance for query

answering. (3) With distance matrix as indices, the evaluation

of RQs is very efficient. Moreover, algorithm biBFS works

reasonably well when working on large graphs. (4) PQs can

be efficiently evaluated, and their evaluation algorithms scale

well with large graphs and complex patterns.

7 Conclusion

We have proposed extensions of reachability queries (RQs)

and graph pattern queries (PQs) by incorporating a subclass

of regular expressions to capture edge relationships com-

monly found in emerging applications. We have also revised

graph pattern matching by introducing an extension of the

classical notion of graph simulation. Moreover, we have set-

tled fundamental problems (containment, equivalence, mini-

mization) for these queries, all in low ptime. In addition, we

have shown that the increased expressive power does not in-

cur higher evaluation complexity. Indeed, we have provided

two algorithms for evaluating RQs, one in quadratic time,

the same as their traditional counterparts [6]. We have also

developed two cubic-time algorithms for evaluating PQs, as

opposed to the intractability of graph pattern matching via

subgraph isomorphism. We have verified experimentally that

these queries are able to find more sensible information than

their traditional counterparts, and that the algorithms are effi-

cient when evaluating RQs and PQs on large graphs, using

real-life data and synthetic data.

Several extensions are targeted for future work. One topic

is to extend RQs and PQs by supporting general regular

expressions. Nevertheless, with this comes increased com-

plexity. Indeed, the containment and minimization problems

become pspace-complete even for RQs. Another topic is to

identify application domains in which simulation-based PQs
are most effective. A third topic is to study incremental algo-

rithms for evaluating RQs and PQs. In practice data graphs

are frequently modified, and it is too costly to re-evaluate

PQs in cubic-time (or RQs in quadratic-time) on large data

graphs every time the graphs are updated. This suggests that

we evaluate the queries once, and incrementally compute

query answers in response to changes to the graphs. It is,

however, nontrivial to find incremental algorithms that guar-

antee to minimize unnecessary recomputation. While incre-
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mental graph pattern matching has recently been investigated

[34,48], it poses new challenges when graph patterns are de-

fined in terms of regular expressions, hence, deserves a full

treatment.
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