Adding Regular Expressions to Graph Reachability and Pattern Queries

Wenfei Fan ${ }^{12}$, Jianzhong Li ${ }^{2}$, Shuai Ma ${ }^{1}$, Nan Tang ${ }^{{ }^{\prime}}$, Yinghui Wu ${ }^{1}$ ${ }^{1}$ University of Edinburgh
${ }^{2}$ Harbin Institute of Technology
\{wenfei@inf.,shuai.ma@, ntang@inf.,y.wu-18@sms.\}ed.ac.uk,lijzh@hit.edu.cn

Two cubic-time algorithms.

- Join-based algorithm:
- Initialize candidates for query nodes.
- Join operation for query edges till fixpoint.
- Split-based algorithm:
- Initialize over-estimated partition-relation pair for query nodes.
- Split blocks and filter candidates till fixpoint.

Experimental results

Fundamental problems

Containment. Given two PQs Q_{1} and Q_{2}, Q_{1} is contained in Q_{2}, if for all data graph, the result of each edge in Q_{1} is contained in the result of an edge in Q_{2}.

Equivalence. Two PQs Q_{1} and Q_{2} are equivalent, iff they are contained in each other.

Theorem: Given two PQs Q_{1} and Q_{2}, it is in cubic time to determine whether Q_{1} is contained in, or equivalent to Q_{2}.

Query Containment and Equivalence
Query minimization. The minimization problem is to find, for a given $\mathrm{PQ} Q$, another $\mathrm{PQ} Q_{m}$ that is equivalent to Q and has a minimum size (the sum of nodes and edges).
Theorem. Given any PQ Q, a minimum equivalent PQ Q_{m} of Q can be computed in cubic time.

Algorithms

Reachability queries

An RQ query can be evaluated in quadratic time, by capitalizing a matrix of shortest distances.

Graph pattern queries

Given a PQ Q and a data graph G, Q can be evaluated in cubic time.

Querying Terrorist Network

Summary:

- PQs are able to identify far more sensible matches in emerging application than the conventional approaches.
- PQs can be efficiently evaluated, and scale well with large graphs and complex patterns.

Conclusion

- Extensions of reachability queries (RQs) and graph pattern queries (PQs) by incorporating a subclass of regular expressions to capture edge relationships
- Fundamental problems (containment, equivalence, minimization) for these queries are all in low ptime.
- Two cubic-time algorithms for evaluating PQs.

Future work

- Extend RQs and PQs by supporting general regular expressions.
- Identify application domains in which simulation-based PQs are most effective.
- Find incremental evaluation algorithms that guarantee to minimize unnecessary recomputation.

